摘要
运用Banach压缩映像原理、Leray-Schauder非线性抉择、Krasnoselskii’s不动点定理和Schaefer不动点定理,讨论带积分边界条件的一致分数阶Langevin方程解的存在性,并举例说明所得结果的适用性。
By utilizing Banach contraction mapping principle,Leray-Schauder’s nonlinear alternative,Krasnoselskii’s fixed point theorem and Schaefer fixed point theorem,we discussed the existence of solutions for conformable fractional Langevin equation with integral boundary conditions,and gave some examples to illustrate the applicability of the results obtained.
作者
吴玉翠
周文学
豆静
WU Yucui;ZHOU Wenxue;DOU Jing(College of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2022年第5期509-519,共11页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学基金(11961039,11801243)
兰州交通大学校青年科学基金(2017012)
关键词
一致分数阶导数
LANGEVIN方程
积分边值问题
不动点定理
conformable fractional derivative
Langevin equation
integral boundary value problems
fixed point theorem