期刊文献+

氟离子核糖开关调控行为的动力学研究

Kinetic Study for Regulation Behaviors of the Fluoride Riboswitch
原文传递
导出
摘要 核糖开关位于RNA(ribonucleic acid)的非编码区,参与调控很多重要的生物过程。本文利用已发展的RNA转录折叠预测方法,研究了位于Thermotoga petrophila中的氟离子核糖开关。计算结果表明,该核糖开关在转录过程中先折叠成一个包含假结并可以特异性结合配体的适体域结构。当氟离子浓度较低时,随着RNA序列的延长,转录终止子开始成核、延长,最终完全形成,引起转录提前终止;当氟离子浓度较高时,配体和适体域结构结合形成一个稳定的复合体结构,阻止了转录终止子的形成,从而使得下游基因可以正常表达。该核糖开关受转录速度和配体浓度的联合控制,体现出动力学调控特性。 Riboswitches, resided within non-coding region of certain RNA, are involved in many important biological processes.By using the recently developed RNA co-transcription folding prediction methods, we studied the regulation of the fluoride riboswitch from Thermotoga petrophila. The results suggest that the riboswitch folds into the terminator(T) with a pseudoknot, which can specially bind fluoride ions during transcription. At a low fluoride concentration, with the elongation of the nascent RNA chain, the terminator is nucleated and formed, which leads to the transcription termination. At a high fluoride concentration, the aptamer structure binds the ligand to form a stable complex structure, which prevents the full formation of the terminator and promotes expression of downstream genes. The transcription speed and ligand concentration are coupled to control regulation activities of the riboswitch, which are consistent with a kinetic control model.
作者 龚沙 杜承意 李丹 GONG Sha;DU Chengyi;LI Dan(Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization/Hubei Collabora-tive Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains,Huanggang Normal University,Huang-gang 438000,Hubei,China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2020年第1期74-80,共7页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(31600592,31270761) 湖北省重点实验室开放基金(201932003).
关键词 氟离子核糖开关 转录折叠 基因调控 RNA结构 折叠动力学 fluoride riboswitch co-transcription folding gene regulation RNA structure folding kinetics
  • 相关文献

参考文献3

二级参考文献94

  • 1赵谨,杨克恭,张学.一种新发现的基因表达调控机制——核糖开关[J].中国生物化学与分子生物学报,2005,21(2):151-157. 被引量:5
  • 2Gilbert S D, Rambo R P, Tyne D V, et al. Structure of the SAM-II riboswitch bound to S-adenosylmethionine [J]. Nat Struct Mol Biol, 2008, 15(2):177-182.
  • 3Lu C, Smith A M, Fuchs R T, et al. Crystal structures of the SAM-III/SMK riboswitch reveal the SAM- dependent translation inhibition mechanism [J]. Nat Struct Mol Biol,2008, 15(10):1076 – 1083.
  • 4Poiata E, Meyer M M, Ames T D,et al. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria [J]. RNA, 2009, 15(11):2046-2056.
  • 5Weinberg Z, Regulski E E, Hammond M C, et al. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches [J]. RNA, 2008, 14(5):822-828.
  • 6Thore S, Frick C, Ban N. Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch [J].J Am Chem Soc, 2008, 130(26):8116-8117.
  • 7Serganov A. The long and the short of riboswitches [J]. Curr Opin Struct Biol, 2009, 19(3):251-259.
  • 8Klein D J, Ferré-D'Amaré A R. Structural basis of GlmS ribozyme activation by glucosamine-6-phosphate [J].Science, 2006, 313(5794):1752-1756.
  • 9Ferré-D'Amaré A R.The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA [J]. Q Rev Biophys, 2010, 43(4):423-447.
  • 10Meyer M M, Roth A, Chervin S M, et al. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria [J]. RNA, 2008, 14(4):685-695.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部