期刊文献+

基于因子图优化的DBSCAN聚类组合导航算法

DBSCAN Cluster Combinatorial Navigation Algorithm Based on Factorial Graph Optimization
下载PDF
导出
摘要 在传感器工作中,无人车发动机震动、道路颠簸等外部因素都会引起传感器定位数据的误差,针对这一现象文中提出了一种基于因子图优化的DBSCAN聚类算法,在震动环境中收集传感器定位数据集,使用因子图优化对数据进行降噪,可有效缩减噪音点,再通过DBSCAN聚类算法进行簇划分,对类中数据求得重心,从而确定最终测算坐标位置,可以在震动环境中有效提升定位数据精度。 In response to this phenomenon,a DBSCAN clustering algorithm based on factor graph optimization is proposed,which collects sensor positioning data set in the vibration environment,uses factor map optimization to reduce the noise of the data,which can effectively reduce the noise point,and then divide the cluster by DBSCAN clustering algorithm to find the center of gravity of the data in the class,so as to determine the final measured coordinate position.It can effectively improve the accuracy of positioning data in vibration environment.
作者 杨然 王虹 孙传波 余国才 YANG Ran;WANG Hong;SUN Chuan-bo;YU Guo-cai(School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《微波学报》 CSCD 北大核心 2023年第S01期409-413,共5页 Journal of Microwaves
基金 国家自然科学基金(U2141237)
关键词 DBSCAN聚类 IMU 因子图优化 DBSCAN clustering IMU factor graph optimization
  • 相关文献

参考文献5

二级参考文献36

  • 1CHEN M S, HAN J H, YU P S. Data mining: An overview from a database perspective [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866 -883.
  • 2KAUFAN L, RPUSSEEUW P J. Finding groups in data: An introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990.
  • 3ESTER M, KRIEGEL H P, XU X W. Knowledge discovery in large SPATIAL database: Focusing techniques for efficient class identification [ C]//Proceedings of the 4th International Symposium on Advances in Spatial Databases, LNCS 951. London: Springer-Verlag, 1995:67-82.
  • 4ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial database with noise [ C]//KDD - 96: Proceedings of the 2nd International Conference on Knowledge Discovering and DataMining. Portland, Oregon: [ s. n.], 1996:226-231.
  • 5GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998:73-84.
  • 6AGRAWAL R, GEHRKE J, GUNOPOLOS D, et al. Automatic subspace clustering of high dimensional data for data mining application [C]// Proceedings of the ACM SIGMOD International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 7ALEXANDROS N, YANNIS T, YANNIS M. C2P: Clustering based on closest pairs [ C]//Proceedings of the 27th International Conference on Very Large Databases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 8Koremura K,Asakura M,Matsumoto C.Position accuracy improvement using fuzzy processing on GPS data[A].Proceeding s of GPS 294[C].Alexandria,Virginia:The Institute of Navigation,1994.165-172.
  • 9Clarke L P,Ve1thuizen M R P,Camacho A,et al.MRI segmentation:methods and applications[J].Magnita Resonance Imaging,1995,13(3):343-368.
  • 10孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部