期刊文献+

基于分辨率增强的亚毫米波RCS成像分析

Submillimeter Wave RCS Imaging Analysis Based on Resolution Enhancement
下载PDF
导出
摘要 亚毫米波三维全息成像提供了一种新的RCS(Radar Cross Section)测量分析方法,然而基于传统三维成像算法的RCS测量分析方法在实际应用中总是受到系统带宽的限制,低带宽会导致较低的距离分辨率,使得最终图像的距离分布不连续。为了克服这一限制,本文提出了一种基于距离分辨率增强(Range Resolution Enhancement,RRE)的亚毫米波三维全息成像算法,该算法利用基于相位展开的方法来检索与距离相关的相位,该相位可以直接转换为精细的距离分布,在距离域上重建具有高分辨率的三维毫米波图像,从而更清晰地显示目标的几何形状和细节特征,得到更为精细的RCS测量数据。缩比实验结果表明,相较于基于传统三维算法,该方法使得RCS的测量性能有所提高。 Submillimeter-wave three-dimensional holographic imaging provides a new RCS(Radar Cross Section)measurement and analysis method.However,the RCS measurement and analysis method based on traditional three-di mensional imaging algorithms is always limited by the system bandwidth in practical applications.This results in low er distance resolution,making the distance distribution of the final image discontinuous.To overcome this limitation,this paper proposes a submillimeter-wave 3D holographic imaging algorithm based on Range Resolution Enhancement(RRE),which utilizes a phase unwrapping-based method to retrieve the range-dependent phase,which It can be dire ctly converted into a fine distance distribution,and a high-resolution three-dimensional millimeter-wave image can be reconstructed in the distance domain,so that the geometric shape and detailed features of the target can be displayed more clearly,and more refined RCS measurement data can be obtained.The scale experiment results show that,co mpared with the traditional 3D algorithm,this method improves the measurement performance of RCS.
作者 刘依纯 朱莉 王斌 LIU Yi-chun;ZHU Li;WANG Bin(Nanjing University of Science&Technology,Department of Detection and Control Engineering,School of Electronic Engineering and Optical Technology,Nanjing 210094,China)
出处 《微波学报》 CSCD 北大核心 2023年第S01期333-337,共5页 Journal of Microwaves
关键词 亚毫米波 全息成像 雷达散射面积 距离分辨率增强算法 Submillimeter wave holographic imaging radar scattering area distance resolution enhancement algor ithm
  • 相关文献

参考文献1

二级参考文献25

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部