期刊文献+

一种基于稀疏阵列的插值-时间反演镜目标定位方法

A Target Locating Method Based on Interpolation-Time Reversal Mirror Technique Using Sparse Array
下载PDF
导出
摘要 稀疏阵列在识别远场目标时,由于稀疏阵列的栅瓣和主瓣大小相当,导致无法分辨目标方向。本文根据均匀排布的稀疏天线阵列的位置信息和接收的目标散射信号,利用插值法按照对应的幅度相位在稀疏阵列阵元之间不断插入虚拟单元,使得稀疏阵列变为虚拟稠密阵列,再通过时间反演算法对虚拟稠密阵列进行时间反演,以此消除稀疏阵列的栅瓣,识别目标的方向。仿真计算结果验证了该方法的可行性和准确性。 When the sparse array recognizes the far-field target,it is impossible to distinguish the direction of the target because the size of the grid lobe and the main lobe of the sparse array are similar.This paper,based on the sparse antenna arrays of uniform configuration of location information and receive target reflection signal,using interpolation method in accordance with the corresponding amplitude phase in sparse array array yuan between insert virtual unit,the sparse array into a virtual dense array,travel through the time inversion algorithm to time reversal of virtual dense array,in order to eliminate the sparse array of gate disc so as to identify the target direction.Simulation results show that the method is feasible and accurate.
作者 吴昊 梁天 林中朝 张玉 赵勋旺 WU Hao;LIANG Tian;LIN Zhong-Chao;ZHANG Yu;ZHAO Xun-Wang(Shaanxi Key Laboratory of Large Scale Electromagnetic Comptuing,Xidian Univ.,xi’an 710071,China)
出处 《微波学报》 CSCD 北大核心 2020年第S01期56-59,共4页 Journal of Microwaves
基金 国家重点研发计划(2017YFB0202102) 国家自然科学基金(61901323) 中央高校基本科研业务费专项资金(XJS190210)
关键词 时间反演 稀疏阵列 插值法 目标识别 time reversal sparse array interpolation method target recognition
  • 相关文献

参考文献1

二级参考文献12

  • 1Zhang Q, Yeo T S, Du G, et al. Estimation of three-dimensional motion parameters in interferometrie ISAR imaging[J]. IEEE Trans. Geosci. Remote Sens. , 2004, 2 (42) : 292 - 300.
  • 2Ma C Z, Yeo T S, Tan C S, et al. Three-dimensional imaging of targets using collocated MIMO radar [ J ]. IEEE Trans. Geosci. Remote Sens. , 2011. 4 (21) : 1- 13.
  • 3Duan G Q, Wang D W, Ma X Y, et al. Three-dimensional imaging via wideband MIMO radar system [ J ]. IEEE Geosci. Remote Sens. Lett. , 2010, 3(7) : 445 - 449.
  • 4Donoho D L. Compressed sensing[ J ]. IEEE Trans. Information Theory, 2006, 52(4) : 1289-1306.
  • 5Richard Baraniuk, Philippe Steeghs. Compressive radar imaging [ A ]. IEEE Radar Conference [ C ], Boston, MA, 2007:128-133.
  • 6Candes E. The restricted isometry property and its implications for compressed sensing [ J ]. Comptes Rendus Mathematic, 2006, 2,16 (9): 589-592.
  • 7Mohimani G H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed norm [ J ]. IEEE Trans. Signal Processing. 2009, 57(1) : 289-301.
  • 8Candes E, Tao T. Near optimal signal recovery from random projections : Universal encoding strategies [ J ]. IEEE Trans. Information Theory, 2006, 52 ( 12 ) : 5406 -5425.
  • 9郑远,胡英辉,邓云凯.混沌相位编码信号成像与反欺骗干扰仿真[J].系统仿真学报,2008,20(15):3962-3965. 被引量:6
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部