期刊文献+

基于K-SSD-F的东亚飞蝗视频检测与计数方法 被引量:4

Video Detection and Counting Method of East Asian Migratory Locusts Based on K-SSD-F
下载PDF
导出
摘要 针对目前国内蝗虫监测主要以人工监测为主、监测效率低且计数不准确的问题,以5龄东亚飞蝗为实验对象,提出了一种蝗虫视频计数方法K-SSD-F算法。该方法可以实时、连续、自动监测蝗虫的数量。首先利用背景分离法中的KNN算法提取视频前后帧的时空特征;然后通过标注好的数据训练SSD模型,并对视频进行检测,提取视频的静态特征,二者结合以提高计数准确率;最后利用补帧算法识别因姿态变化导致的漏计数的帧。实验结果表明,蝗虫识别准确率为97%,召回率为89%,平均检测精度(mAP)为88.94%,F1值为92.82%,且检测速度达到了19.78 f/s。本文方法具有较好的鲁棒性,可以实现蝗虫的实时和自动计数,其精度优于其他模型,也可为其他种类的昆虫自动识别计数提供理论基础。 At present,domestic locust monitoring is mainly based on manual monitoring,with low monitoring efficiency and inaccurate counting.In response to the above problems,the K-SSD-F algorithm,a video counting method of locusts,was proposed with the 5 th instar migratory locust as the experimental object.This method can monitor the number of locusts in real time,continuously and automatically.Firstly,the KNN algorithm in the background separation method was used to extract the spatiotemporal features of the frames before and after the video;then the SSD model was trained through the labeled data,the video was detected,and the static features of the video were extracted,and the two were combined to improve the counting accuracy;finally,the frame compensation algorithm was used to recognize missing frames due to posture changes.The experimental results showed that the precision of locust identification was 97%,the recall rate was 89%,the average detection accuracy(mAP)was 88.94%,the F1 value was 92.82%,and the detection speed reached 19.78 f/s.The proposed method had good robustness,which can realize real-time and automatic counting of locusts,its accuracy was better than that of other models,and it can also provide a theoretical basis for automatic identification and counting of other kinds of insects.
作者 李林 柏召 刁磊 唐詹 郭旭超 LI Lin;BAI Zhao;DIAO Lei;TANG Zhan;GUO Xuchao(College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2021年第S01期261-267,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重点研发计划项目(2016YFD0300710)
关键词 东亚飞蝗 视频目标计数 背景分离法 SSD算法 补帧算法 East Asian migratory locust video target counting background separation method SSD algorithm frame compensation algorithm
  • 相关文献

参考文献5

二级参考文献56

  • 1韩文霆,李敏,陈微.作物数字图像获取与长势诊断的方法研究[J].农机化研究,2012,34(6):1-6. 被引量:14
  • 2范艳峰,甄彤.谷物害虫检测与分类识别技术的研究及应用[J].计算机工程,2005,31(12):187-189. 被引量:26
  • 3杨宏伟,张云.计算机视觉技术在昆虫识别中的应用进展[J].生物信息学,2005,3(3):133-136. 被引量:8
  • 4张建伟,王永模,沈佐锐.麦田蚜虫自动计数研究[J].农业工程学报,2006,22(9):159-162. 被引量:26
  • 5Despland E, Rosenberg, Simpson S J. Landscape structure and locust swarming: a satellite's eye view[ J]. Ecography,2004, 27(3) :381 -391.
  • 6Soille P. Morphological image analysis: principles and applications[ M]. 2nd ed. Berlin, Germany: Springer, 2003.
  • 7Meyer F, Beucher S. Morphological segmentation [ J]. Journal of Visual Communication and Image Represention, 1990, 1(1):21 -46.
  • 8Breu H, Gil J, Kirkaptrick D, et al, Linear time euclidean distance transform algorithms[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17 (5) :529 - 533.
  • 9Alvarado P. Segmentation of color images for interactive 3D object retrieval[ D]. Alemania: RWTH-A, 2004.
  • 10Habib G, Nadipuram R P, John J E, et al. A neuro-fuzzy approach for insect classification [ C] //World Automation Congress, Third International Symposium on Soft Computing for Industry, Maul, Hawaii, 2000.

共引文献66

同被引文献44

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部