期刊文献+

CFD-DEM模型最优网格尺寸的理论推证 被引量:2

Theoretical validation on the optimal mesh size of CFD-DEM model
下载PDF
导出
摘要 在多相流数值模拟中,合理确定流体网格尺寸对未解析CFD-DEM模型计算精度至关重要。针对网格尺寸问题,以单颗粒沉降运动为例,结合CFD-DEM数值模型,对最优网格尺寸开展了理论推证研究。研究表明,网格尺寸变化通过孔隙率参数影响颗粒拖曳力的分配,进而影响数值模拟的结果。基于此,提出了多相流中考虑孔隙率影响的阻力系数推导方法,并以Gidaspow模式为例,对比分析了不同孔隙率条件下单颗粒沉降的理论、试验与数值结果,验证了理论推导方法的合理性。结果表明,处于滞性状态下的颗粒受网格尺寸影响较大,建议网格尺寸大于颗粒尺寸的5倍;处于过渡状态和紊动状态下的颗粒影响较小,建议网格大于粒径3倍。研究结果可为多相流在流固耦合参数设置提供理论支撑。 In the numerical simulation of multiphase flow,it is very important to determine the mesh size of the fluid model reasonably for the computational accuracy of the unresolved CFD-DEM model.Taking the settling motion of single particle as an example,this study focuses on the optimum mesh size of the CFD-DEM model fluid model with the theoretical support.The results show that the changes of mesh size affect the distribution of the particle drag force through the porosity,and then influence the numerical simulation results.Based on this,a method was proposed to calculate the drag coefficient in multiphase flow considering the influence of porosity.Furthermore,the theoretical,experimental and numerical results of single particle settling with different porosity were compared and analyzed based on Gidaspow formula,which verified the rationality of the theoretical derivation method.The results show that the particles in the viscous state are greatly affected by the mesh size,and it is suggested that the mesh size is larger than 5 times the particle size.Particles in the transition and turbulent state are less sensitive to the mesh size,and it is suggested that the mesh size is larger than 3 times the particle size.The research results can provide theoretical support for the parameter setting of multiphase flow in fluid-solid coupling.
作者 姚鹏 王远 冒刘鹏 苏敏 YAO Peng;WANG Yuan;MAO Liu-peng;SU Min(State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China;College of Harbor,Coastal and Offshore Engineering,Hohai University,Nanjing 210098,China;State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China;State Key Laboratory of Estuarine and Coastal Research,East China Normal University,Shanghai 200241,China)
出处 《泥沙研究》 CAS CSCD 北大核心 2023年第5期1-7,34,共8页 Journal of Sediment Research
基金 国家重点研发计划课题(2022YFC3106201) 国家自然科学基金项目(52071129,51709288,51809296) 大连理工大学海岸和近海工程国家重点实验室开放基金项目(LP2207) 华东师范大学河口海岸学国家重点实验室开放基金项目(SKLEC-KF202006)
关键词 CFD-DEM 网格尺寸 孔隙率 拖曳力 泥沙沉降 CFD-DEM mesh size porosity drag force sediment settling
  • 相关文献

参考文献3

二级参考文献40

  • 1白玉川,许栋,张雪岩.冲积床面上明渠水流湍流特性及其与底层泥沙起动关系的试验研究[J].自然科学进展,2005,15(4):439-445. 被引量:6
  • 2秦崇仁,彭亚.波浪作用下海底裸置管道周围的冲刷[J].港工技术,1995,32(3):7-12. 被引量:17
  • 3郭庆超.天然河道水流挟沙能力研究[J].泥沙研究,2006,31(5):45-51. 被引量:30
  • 4王光谦.河流泥沙研究进展[J].泥沙研究,2007,32(2):64-80. 被引量:88
  • 5Jackson, R. G. Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows[J]. Journal of Fluid Mechanics, 1976, 77(3) : 531 -560.
  • 6Sumer, B. M. , Oguz, B. Particle motions near the bottom in turbulent flow in an open channel. Part 1 [J]. Journal of Fluid Mechanics, 1978, 86:109 - 127.
  • 7Sumer, B. M. , Deigaard, R. Particle motions near the bottom in turbulent flow in an open channel. Part 2 [J]. Journal of Fluid Mechanics, 1981, 109:311 -337.
  • 8Kidanemariam, A. G. , Chan-Braun, C. , Doychev, T. , Uhlmann, M. Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction[J]. New Journal of Physics, 2013, 15,025031 : 1 - 42.
  • 9Shao, X. , Wu, T. , Yu, Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number[J]. Journal of Fluid Mechanics, 2012, 693:319 -344.
  • 10Ji, C., Munjiza, A., Avital, E., Xu, D., Williams, J. J. R. Sahation of particles in turbulent channel flow[J]. Phys- ical Review E, 2014, 89(5) , 052202:1 -14.

共引文献17

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部