摘要
本文研究了q-Bernstein-Stancu-Kantorovich算子在Orlicz空间内的逼近问题,利用鲁津定理首先给出了简单的q-Bernstein-Stancu-Kantorovich算子的收敛性定理;在此基础上,借助Hölder不等式、光滑模和K泛函等工具研究了较复杂的q-Bernstein-Stancu-Kantorovich算子在Orlicz空间内的逼近性能,给出了逼近阶的估计。
In the paper,the approximation problem of the q-Bernstein-Stancu-Kantorovich operator in the Orlicz space was studied,and the convergence theorem of the simple q-Bernstein-Stancu-Kantorovich operator was first given by using the Luzin theorem.On this basis,the approximation performance of the complex q-Bernstein-Stancu-Kantorovich operator in the Orlicz space was studied with the tools such as the Hölder’s inequality,smooth mode and K-functional.Finally,the approximation order is estimated.
作者
刘倩
吴嘎日迪
LIU Qian;WU Garidi(College of Mathematics Science,Inner Mongolia Normal University,Center for Applied Mathematicse,Inner Mongolia Autonomous Regin,Hohhot 010022,China)
出处
《内蒙古农业大学学报(自然科学版)》
CAS
2023年第5期63-72,共10页
Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金
国家自然科学基金资助项目(11761055)
内蒙古师范大学基本科研业务费专项资金资助项目(2023JBZD007)