期刊文献+

Hydrodynamic Characteristics of New Floating Wind-Wave Energy Combined Power Generation Devices Under Typhoon-Wave-Current Coupling

台风-浪-流耦合作用下新型浮式风能-波浪能联合发电装置水动力特性
下载PDF
导出
摘要 The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%. 中国南海风能-波浪能资源丰富,风浪联合发电装置目前却处于概念研发阶段,加上近几年超强台风等极具破环力的极端海况频繁出现,对海上浮式平台安全性提出了严峻挑战。针对现阶段研究缺少对风浪联合发电装置在极端海况的安全性分析,本文以半潜式风力机(Semi-OC4)与振荡浮子式波浪能装置相结合的风浪联合发电装置(OC4-WEC)为研究对象,基于MCT(Model coupling toolkit)建立中尺度WRF-SWAN-FVCOM(W-F-S)实时耦合平台,分析超强台风“威马逊”过境全过程海上风电场风-浪-流的时空演变;再结合了中/小尺度嵌套的方法分析了OC4-WEC平台的流场特性。结果表明:建立的W-S-F平台对台风路径的模拟精度较单WRF模式提高了42.51%;台风-浪-流作用下OC4-WEC平台较半潜式风力机垂荡运动幅值减小38.1%,纵荡运动幅值减小26.7%,纵摇运动幅值减小23.4%.
作者 ZHAO Yongfa KE Shitang YUN Yiwen 赵永发;柯世堂;员亦雯(南京航空航天大学土木与机场工程系,南京211106)
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期82-89,共8页 南京航空航天大学学报(英文版)
基金 jointly funded by the National Key Research and Development Projects(No.2017YFE0132000) the National Natural Science Foundation of China(Nos.5211101879,52078251,52108456) the Natural Science Foundation of Jiangsu Province(Nos.BK20211518,BK20210309)
关键词 extreme sea conditions wind and wave combined power generation wave nonlinearity 极端海况 风浪联合发电 波浪非线性
  • 相关文献

参考文献3

二级参考文献25

  • 1毛慧琴,宋丽莉,黄浩辉,植石群,刘爱君.广东省风能资源区划研究[J].自然资源学报,2005,20(5):679-683. 被引量:46
  • 2任建莉,钟英杰,张雪梅,徐璋.海洋波能发电的现状与前景[J].浙江工业大学学报,2006,34(1):69-73. 被引量:70
  • 3龚强,袁国恩,汪宏宇,蔺娜,于华深.辽宁沿海地区风能资源状况及开发潜力初步分析[J].地理科学,2006,26(4):483-489. 被引量:18
  • 4沈顺根,钱秀贞.资源海洋--开发利用富饶的蓝色宝库[M].北京:海潮出版社,2003.
  • 5Rashid A, Hasanzadeh S. Status and potentials of o~fshore wave energy resources in Chahbahar area (NW Omman Sea) [J]. Re newable and Sustainable Energy Reviews, 2011, 15 (9)~ 4876- 4883.
  • 6Namranzad B, Etemad-Shahidi A, Chegini V. Assessment of wave energy variation in the Persian Gulf I-J~. Ocean Engineering, 2013, 70~ 72-80.
  • 7Akpamar A, Komurcu M I. Assessment of wave energy resource of the Black Sea Based on 15-year numerical hindcast data I-J~. Ap- plied Energy, 2013~ 101: 502-512.
  • 8Atlas R, Hoffman R N, Ardizzone J, et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorologi- cal and oceanographic applications [J]. American Meteorological Society, 2011, 92: 157-174.
  • 9Zheng C W, Pan J, Li J X. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009 [J]. Ocean Engi neering, 2013, 65: a9-48.
  • 10Iglesias G, Carballo R. Offshore and inshore wave energy assess ment: Asturias (N Spain) [J]. Energy, 2010, 35(5): 1964- 1972.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部