期刊文献+

度序列在图结构相似研究中的应用

Applying Degree Sequence in the Study of Graph Structure Similarity
原文传递
导出
摘要 给出一个度序列的所有的度序列分解,研究了度序列的并、分度重合、分度撕裂、分解运算;给出特殊度序列匹配;用图同态运算和图的度序列来判断图同构,以及度序列的图结构的相似性:如果2个图的度序列相等,则它们有非平凡全同构度序列匹配;建立了度序列格(伴随图格)与普通格的一个等价关联。度序列格和图格为图结构的相似与匹配提供了“集合形式的相似与匹配”,使得点-点(图-图)之间的相似与匹配上升到集合-集合之间的相似与匹配,更加适合研究网络社区间的相似与匹配。提出了求解完备度序列、最近度序列、最小度序列、近似最近度序列、最近度序列邻居等几个尚待研究的问题。 This paper presents all the degree sequence decompositions of a degree sequence,studies the union,component coinciding,component splitting,and decomposition operations of the degree sequence;gives the special degree sequence matching;uses the graph homomorphism operation and the degree sequence of the graph to judge graph isomorphism,and the similarity of the graph structure of the degree sequence:If the degree sequences of two graphs are equal,then they have non-trivial isomorphism degree sequence matching;the degree sequence lattice is established(accompanying graphic lattice)is an equivalent association with ordinary lattices.Part of the solution to the problem of graph structure similarity is given,and further research questions are proposed.Degree sequence lattices and graph lattices provide“similarities in set form for the similarity and matching of graph structures”“and matching”,which makes the similarity and matching between vertex-vertex(graph-graph)rise to set-set similarity and matching,which is more suitable for studying the similarity and matching between network communities.Finally,we propose the perfect degree sequence and the closest sequence problem of degree sequence lattice,the shortest degree sequence problem of degree sequence lattice,approximate closest degree sequence problem,nearest degree sequence neighbor problem.We will focus on the aforementioned problems in the future.
作者 王晓敏 苏静 姚兵 WANG Xiao-min;SU Jing;YAO Bing(Beijing Remote Sensing Equipment Research Institute,Beijing 100854,China;College of Computing Science&Technology,Xi’an University of Science and Technology,Xi’an 710054,China;College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《模糊系统与数学》 北大核心 2023年第5期161-174,共14页 Fuzzy Systems and Mathematics
基金 重点研发计划项目(2019YFA0706401) 国家自然科学基金重点项目(61632002) 国家自然科学基金面上项目(61872399,61872166,61672264) 国家自然科学基金青年项目(61802009,61902005,61363060,61662066)
关键词 度序列 图结构相似 图格 度序列格 Degree Sequence Graph Structure Similarity Graph Lattice Degree Sequence Lattice
  • 相关文献

参考文献3

二级参考文献15

  • 1Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S. Spanning directed trees with many leaves. SIAM Journal on Discrete Mathematics archive, 23(1): 466-476 (2008).
  • 2Bondy-Murty-old Bondy, J.A., Murty, U.S.R. Graph theory with application. Macmillan, New York, 1976.
  • 3Burris, A.C., Schelp, R.H. Vertex-distinguishing proper edge-coloring. J. Graph Theory 26(2): 70-82 (1997).
  • 4Caro, Y., West, D.B., Yuster, R. Connected domination and spanning trees with many leaves. SIAM J. Discrete Math., 13:202-211 (2000).
  • 5Czygrinow, A., Fan, G.H., Hurlbert, G., Kierstead, H.A., William, T. Trotter. Spanning Trees of Bounded Degree. The Electronic Journal of Combinatorics 8:#R33 (2001).
  • 6Ding, G., Johnson, T., Seymour, P. Spanning trees with many leaves. Journal of Graph Theory, 37(4): 189-197 (2001).
  • 7Gallian. J.A. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, 16:#DS6 (2009).
  • 8Karp, R.M. Reducibility among combinatorial problems. In: Complexity of Computer Computations, Plenum, New York, 1972, 85-103.
  • 9Kleitman, D.J., Douglas B. West, D.B. Spanning trees with many leaves. SIAM Journal on Discrete Mathematics 4:99-106 (1991).
  • 10Linial, N. A lower bound for the circumference of a graph. Discrete Mathematcs, 15:297-300 (1976).

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部