期刊文献+

L-序完备格之间的L-逼近态射

L-approximation Morphisms between L-ordered Complete Lattices
原文传递
导出
摘要 本文提出L-序完备格之间的L-逼近态射和L_(≤)-Galois联络的概念。首先,研究了L_(≤)-Galois联络和L-逼近态射之间的一一对应关系。然后,研究了L-序完备格和L-逼近态射构成的范畴的基本性质。最后,研究了完备剩余格之间的同态映射所诱导的L-序完备格范畴之间的函子的性质。 This paper proposes the concepts of L-approximation morphism and L-Galois connection between L-ordered complete lattices.Firstly,the one-to-one correspondence between L-approximation morphisms and L-Galois connections is established.Then,the basic properties of the category composed of L-ordered complete lattices and L-approximation morphisms are investigated.Finally,the properties of functors between categories of L-ordered complete lattices which is induced by homomorphic maps between complete residuated lattices are studied.
作者 袁脆 郭兰坤 YUAN Cui;GUO Lan-kun(College of Mathematics and Statistics,Hunan Normal University,Changsha 410012,China;Key Laboratory of High Performance Computing and Stochastic Information Processing(Hunan Normal University),Changsha 410012,China)
出处 《模糊系统与数学》 北大核心 2023年第3期12-18,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金面上项目(12171149,61976089) 湖南省自然科学基金优秀青年基金项目(2019JJ30016) 湖南省教育厅科学研究项目重点项目(20A301)
关键词 完备剩余格 L-序完备格 L-逼近态射 Complete Residuated Lattice L-ordered Complete Lattice L-approximation Morphism
  • 相关文献

参考文献1

二级参考文献17

  • 1Adamek, J., Herrlich, H. and Strecker, G. E., Abstract and Concrete Categories, The Joy of Cats, John Wiley & Sons, New York, 1990.
  • 2Bonsangue, M., Breugel, F. and Rutten, J. J. M. M., Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding, Theoret. Comput. Sci.193, 1998, 1-51.
  • 3Borceux, F., Handbook of Categorical Algebra, Vol. 2, Categories and Structures, Cambridge University Press, Cambridge, 1994.
  • 4Eilenberg, S. and Kelly, G. M., Closed categories, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin, 1966, 421-562.
  • 5Gierz, G., Hofmann, K. H., et al., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
  • 6Hohle, U., Commutative, residuated l-monoids, Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U. Hohle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
  • 7Kelly, G. M., Basic Concepts of Enriched Category Theory, London Mathematical Soceity Lecture Notes Series 64, Cambridge University Press, Cambridge, 1982.
  • 8Klement, E. P., Mesiar, R. and Pap, E., Triangular Norms, Trends in Logic, Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
  • 9Lawvere, F. W., Metric spaces, generalized logic, and closed categories, Rend. Sere. Mat. Fis. Milano, 43, 1973, 135-166.
  • 10Lai, H. and Zhang, D., Complete and directed complete Ω-categories, Theoret. Comput. Sci., 388, 2007, 1-25.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部