期刊文献+

一类推广的多粒度双量化决策粗糙模糊集

A Class of Generalized Rough Fuzzy Sets for Multigranularity Double-quantization Decision-theoretic
原文传递
导出
摘要 多粒度决策粗糙集作为一种特殊的概率粗糙集模型,其主要运用条件概率来表示相对量化信息,却忽略了等价类与经典集重叠部分的绝对量化信息,而绝对量化信息在程度多粒度粗糙集中被广泛讨论。因此,本文基于逻辑析取和合取算子将多粒度决策粗糙集和程度多粒度粗糙集相结合,同时引入模糊集和标量基数的思想,提出两对推广的多粒度决策粗糙模糊集∨∨-MGDTRFS和∧∧-MGDTRFS.随后,讨论了∨∨-MGDTRFS和∧∧-MGDTRFS的相关性质,并且给出两者之间的联系。 As a special probabilistic rough set model,the multigranularity decision-theoretic rough set mainly uses conditional probability to represent relative quantitative information,but ignores the absolute quantitative information of the overlap parts between equivalence class and the basic set.However,the graded multigranulation rough set considers the absolute quantitative information.Therefore,based on the logical disjunction and conjunction operators,this paper combines multigranularity decision-theoretic rough set and the graded multigranulation rough set with the idea of fuzzy sets and scalar cardinality,and then proposes two pairs of generalized multigranularity decision-theoretic rough fuzzy sets∨∨-MGDTRFS and∧∧-MGDTRFS.Subsequently,the related properties and connections between∨∨-MGDTRFS and∧∧-MGDTRFS are discussed.
作者 李薇 杨斌 LI Wei;YANG Bin(College of Science,Northwest A&F University,Yangling 712100,China)
出处 《模糊系统与数学》 北大核心 2023年第1期136-151,共16页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(12101500) 中央高校基本科研业务经费(2452018054,2452022370)
关键词 模糊集 多粒度决策粗糙集 多粒度程度粗糙集 逻辑算子 标量基数 Fuzzy Set Multigranulation Decision-theoretic Rough Set Graded Multigranulation Rough Set Logical Operator Scalar Cardinality
  • 相关文献

参考文献1

二级参考文献10

  • 1张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:43
  • 2Pawlak Z. Rough sets[J]. International Journal of Computer and Information Science, 1982,11 (5): 341- 356.
  • 3Pawlak Z. Rough sets: Theoretical aspects of reasoning about date[M]. Boston:Kluwer Academic Publishers, 1991.
  • 4ZiarkoW. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993,46:39-59.
  • 5Yao Y Y, Lin T Y. Generalization of rough sets using modal logics[J]. Intelligent Automation and Soft Computing: An International Journal, 1996,2 (2) : 103- 120.
  • 6Dubois D,Prade H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990,17 (2):191-209.
  • 7Qian Y H, Liang J Y, Dang C Y. Incomplete multi granulation rough set[J]. IEEE Transactions on Systems,Man and Cybernetics, Part A, 2010,40 (2) : 420- 431.
  • 8Qian Y H, et al. MGRS:A multi-granulation rough set[J]. Information Sciences, 2010,180(6) : 949-970.
  • 9Qian Y H, Liang J Y, Wu W Z. Pessimistic rough decision[C] //Second International Workshop on Rough Sets Theory. Zhoushan,China :Zhejiang Ocean University, 2010 : 440- 444.
  • 10戴岱,秦克云,李众立.基于程度粗糙集模型的近似约简和近似相对约简[J].西南科技大学学报,2003,18(4):5-7. 被引量:6

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部