期刊文献+

A Hybrid Model for Short-term PV Output Forecasting Based on PCA-GWO-GRNN 被引量:19

原文传递
导出
摘要 High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,and economic operation of PV systems.This paper proposes a hybrid model based on principal component analysis,grey wolf optimization and generalized regression neural network(PCA-GWO-GRNN)for day-ahead short-term PV output forecasting,considering the features of multiple influencing factors and strong uncertainty.This paper first uses the PCA to reduce the dimension of meteorological features.Then,the high-precision day-ahead short-term PV output forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after dimension reduction,and the parameter of GRNN is optimized by using GWO,which has strong global searching ability and fast convergence.The proposed PCA-GWO-GRNN model effectively achieves a high precision in day-ahead shortterm PV output forecasting,which is demonstrated in a case study on a real PV plant in Jiangsu province,China.The results have validated the accuracy and applicability of the proposed model in real scenarios.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1268-1275,共8页 现代电力系统与清洁能源学报(英文)
基金 supported by the National Key Research and Development Program of China(No.2018YFB1500800) the National Natural Science Foundation of China(No.51807134)
  • 相关文献

参考文献2

二级参考文献51

共引文献221

同被引文献242

引证文献19

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部