期刊文献+

Physics-guided Deep Learning for Power System State Estimation 被引量:8

原文传递
导出
摘要 In the past decade,dramatic progress has been made in the field of machine learning.This paper explores the possibility of applying deep learning in power system state estimation.Traditionally,physics-based models are used including weighted least square(WLS)or weighted least absolute value(WLAV).These models typically consider a single snapshot of the system without capturing temporal correlations of system states.In this paper,a physics-guided deep learning(PGDL)method is proposed.Specifically,inspired by autoencoders,deep neural networks(DNNs)are used to learn the temporal correlations.The estimated system states from DNNs are then checked against physics laws by running through a set of power flow equations.Hence,the proposed PGDL is both data-driven and physics-guided.The accuracy and robustness of the proposed PGDL method are compared with traditional methods in standard IEEE cases.Simulations show promising results and the applicability is further discussed.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第4期607-615,共9页 现代电力系统与清洁能源学报(英文)
  • 相关文献

参考文献2

共引文献7

同被引文献135

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部