期刊文献+

一种基于IC参数的知识图谱嵌入方法

Knowledge Graph Embedding Based on IC Parameters
下载PDF
导出
摘要 TransC是一种高效的知识图谱嵌入方法,通过区分概念和实例来建立概念、实例及关系的嵌入。TransC将概念编码为球体,球体半径被随机初始化并在训练中迭代更新。由此导致模型出现两个问题:一是训练得到的部分球体半径与模型训练目标不符;二是忽略了概念本身提供的语义信息。针对上述两个问题,该文提出了TransIC模型,首先,基于IC参数给出新的概念球体半径求解方法,使求得的半径满足TransC目标,并且丰富了概念嵌入向量的语义信息。其次,该模型以TransC为基础,在概念编码阶段引入基于IC参数的概念球体半径。最后,在公开的数据集YAGO39K上完成链接预测和三元组分类两个任务,并将该文方法实验所得性能与TransC及其他模型的性能进行对比。结果表明,TransIC在多数指标上均取得显著提升。 TransC is an efficient method for embedding knowledge graphs.It establishes the embedding of concepts,instances,and relations by distinguishing concepts and instances.TransC encodes the concept as a sphere,and the radius of the sphere is randomly initialized and updated iteratively during training.This leads to two problems in the model.First,part of the sphere radius obtained from training does not match the model training target.Second,the semantic information provided by the concept itself is ignored.This paper proposes a model named TransIC to deal with the two issues above.TransIC adopts a novel concept sphere radius solution method based on IC parameters,so that the obtained radius meets the TransC goal,and enriches the semantic information of the concept embedding vector.Then it is based on TransC and introduces a concept sphere radius based on IC parameters during the concept coding phase.Finally,the two tasks of link prediction and triple classification are completed on the public data set YAGO39 K,and the experimental performance of the method in this paper is compared with the performance of TransC and other models.The results show that TransIC has achieved a significant improvement in most indicators.
作者 赵晓函 周子力 李天宇 陈丹华 王凯莉 ZHAO Xiaohan;ZHOU Zili;LI Tianyu;CHEN Danhua;WANG Kaili(School of Cyber Science and Security,Qufu Normal University,Qufu,Shandong 273100,China)
出处 《中文信息学报》 CSCD 北大核心 2021年第10期48-55,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61871185) 山东省自然科学基金(ZR2017MD019) 教育部高教司产学合作协同育人项目(201701020098) 赛尔网络下一代互联网技术创新项目(NGII20190516)
关键词 知识图谱嵌入 TransC 信息量 knowledge graph embedding TransC information content
  • 相关文献

参考文献4

二级参考文献101

  • 1刘群 李素建.基于《知网》的词汇语义相似度计算[A]..Computational Linguistics and Language Processing[C].,2002.7.2:59-76.
  • 2Pirro G A Semantic Similarity Metric Combining Features and Intrinsic Information Content, Data & Knowledge Engineering 68, 2009:1289-1308.
  • 3Xiao B, Xue LM, Zhao Y. Scrneme Description Based Estimating for Semantic Orientation of Chinese Vocabulary, in Proceedings Of The 2010 Intcrnational Conference on Computer Application and System Modeling (ICCASM2010), 2010: 671-674.
  • 4Li Y, Bandar A, McLean D. An approach for measuring semantic similarity between words using multiple informa- tion sources, IEEE Trans. on Knowledge and Data Engineering, 2003,15(4):871-882.
  • 5Resnik P. Information content to evaluate semantic similarity in a taxonomy. Proceedings of IJCAI, 1995,448-453.
  • 6Resnik E Semantic Similarity in a Taxonomy: An Informa- tion-Based Measure and Its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research, 1999,11:95-130.
  • 7Seco N, Veale T, Hayes J. An intrinsic information content metric for semantic similarity in WordNet. Proe. of ECAI. 2004. 1089-1090.
  • 8Jiang J, Conrath D. Semantic similarity based on corpus statistics and lexical taxonomy. Proe. of the International Conference on Research in Computational Linguistics. 1998.
  • 9Lin D, An information-theoretic definition of similarity, in Proc. of the 15th International Conf. on Machine Learning. Morgan Kaufrnann, San Francisco, CA, 1998. 296-304.
  • 10HowNet. HowNet's Home Page. http://www.keenage.com.

共引文献305

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部