摘要
光伏出力受随机气象因素的影响而具有极大的不确定性,预测不准将影响配电网系统运行的安全性和稳定性。提出基于残差-密集连接-双向长短期记忆融合网络的光伏出力短期预测模型,按天气类型分类进行模型训练。算例结果表明,所提模型在时间序列预测能力及峰值准确性方面都具有良好的性能。
Photovoltaic output is affected by random meteorological factors and has great uncertainty,whose inaccurate prediction will affect the safety and stability of system operation.This paper proposes a short-term prediction model of PV output based on residual-dense connection-bidirectional long and short-term memory(BiLSTM)fusion network.The model was trained according to weather types.The calculation results show that the proposed model has good performance in time series prediction ability and peak accuracy.
作者
柳杰
练小林
黄冬
李晓露
陈楚靓
LIU Jie;LIAN Xiaolin;HUANG Dong;LI Xiaolu;CHEN Chuliang(State Grid Changxing Power Supply Company,SMEPC,Shanghai 201913,China;School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200093,China)
出处
《电力与能源》
2022年第2期111-116,152,共7页
Power & Energy
基金
国网上海市电力公司科技项目(5209KZ21002T)
关键词
光伏出力短期预测
深度学习
双向长短期记忆网络
残差网络
密集连接网络
short-term forecast of PV output
deep learning
bidirectional long and short memory network
residual network
dense connection network