摘要
本文讨论无界域上带记忆项非经典扩散方程的适定性问题,其中非线性项满足任意阶多项式增长条件.我们运用非经典的Galerkin方法及分析技巧得到整体弱解的存在性,并证明解的唯一性和对初值的连续依赖性.
In this paper we discuss the well-posedness problem of a nonclassical diffusion equation over a unbounded domain with memory term and the nonlinearity term satisfying an arbitrary polynomial growth condition.The existence of the global weak solution is obtained by using the nonclassical Galerkin method and analytical techniques,and the uniqueness of the solution and the continuous dependence on initial values are showed.
作者
罗青青
张江卫
Luo Qingqing;Zhang Jiangwei(School of Mathematics and and Statistics,Changsha University of Science and Technology,Changsha 410001,China)
出处
《数学理论与应用》
2019年第2期42-50,共9页
Mathematical Theory and Applications
基金
湖南省自然科学基金(2018JJ2416)资助
关键词
拟线性发展方程
无界域
整体弱解
任意阶多项式增长
衰退记忆
Quasilinear evolution equation
Unbounded domain
Global weak solution
Arbitrary polynomial growth
Decayed memory