摘要
依据Shannon采样定理的模拟-数字转换器越来越难以满足对高频、宽频信号的采样需求,为实现低速率采样同时缓解数据传输、存储及处理的压力,基于亚Nyquist采样的模拟信息转换器(analog-to-information convertor,AIC)成为研究热点.首先概述压缩感知理论、单向量空间和联合子空间(union of subspaces,UoS)采样理论,着重总结和对比几种符合UoS模型信号的AIC采样架构及恢复算法,进一步提出一种多天线采样系统架构及基于子空间分解的增强型重构方法,最后展望了AIC未来的研究方向.
Traditional analog-to-digital convertors(ADCs)based on the Shannon sampling theorem can hardly satisfy the sampling requirements for high-frequency and wideband signals.For the purpose of sampling rate reducing,data transmission,storage and process relaxing,new analog-to-information convertors(AICs)based on sub-Nyquist sampling methods have drawn intensive attentions in past few years.Compressed sensing(CS)theory,single vector space(SVS)and union of subspaces(UoS)sampling theory are firstly introduced.Based on the UoS signal model,an emphasis on AIC sampling architectures and recovery algorithms are summarized and compared afterwards.Then,a multiple-antenna subNyquist sampling architecture and its corresponding augmented recovery method based on the subspace decomposition are proposed.Finally,future research directions are given.
作者
刘铁锋
杨光
宫铁瑞
杨志家
刘志峰
LIU Tie-feng;YANG Guang;GONG Tie-rui;YANG Zhi-jia;LIU Zhi-feng(Key Laboratory of Networked Control Systems,Shenyang Institute of Automation Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《控制与决策》
EI
CSCD
北大核心
2020年第3期513-522,共10页
Control and Decision
基金
国家重点研发计划项目(2017YFA0700304).