摘要
在电力作业项目的主要参与人员选派中由于人员属性和项目属性的多样性,而且要求一个作业项目的各类主要角色只有一人,同时参与项目的主要人员中有“负责人”“签发人”“许可人”这3种角色。对于这样的应用场景,如果有效地选择最合适的人员和项目匹配是很困难的。利用经典的推荐模型,如“双塔模型”、“Pinsage模型”等均存在明显的不足,本文提出了融合多关系预测和Pinsage无监督hingeloss的双目标图神经网络模型,较好解决了实际应用场景的人员角色推荐问题。
Due to the diversity of personnel attributes and project attributes in the selection and assignment of main participants in electric power operation projects,it is required that there is only one main role in each operation project.Meanwhile,there are three roles of"principal","issuer"and"Licensor"among the main participants in the project.For such an application scenario,it is difficult to effectively select the most appropriate personnel and project matching.Using classical recommendation models,such as"double tower model"and"pinsage model",there are obvious shortcomings.Our research group proposes a dual objective graph neural network model integrating multi relationship prediction and pinsage unsupervised hinge loss,which better solves the problem of personnel color recommendation in practical application scenarios.
作者
吴宏坚
张林裕
赵建文
王俊杰
陈晨艳
朱振坤
Wu Hongjian;Zhang Linyu;Zhao Jianwen;Wang Junjie;Chen Chenyan;Zhu Zhenkun(State Grid Lishui Power Supply Company,Lishui 323050,Zhejiang,China)
出处
《科技通报》
2022年第12期29-33,共5页
Bulletin of Science and Technology
基金
国网浙江省电力有限公司科技项目(5211LS2000JP)
关键词
图神经网络
推荐系统
深度学习
管理优化
graph neural network
recommendation system
deep learning
management optimization