期刊文献+

点力作用在各向同性板表面的格林函数

The Green’s Function for Isotropic Infinite Plate with a Point Force on the Surface
下载PDF
导出
摘要 基于点力作用在各向同性半无限平面表面的格林函数,得到点力作用在各向同性板表面的二维格林函数。首先,根据文献,得到各向同性材料二维通解和边界条件。第二,假设出2组级数表示的调和函数,将调和函数代入到通解和界面条件中,得到4个递推关系的方程组。在给出满足表面条件的各向同性半无限平面的格林函数,就可以求解出任意的递推调和函数,进而求出整个位移场和应力场。最后,通过数值计算,将本文的计算结果与有限元方法(FEM)对比,验证本文算法的正确性。通过计算全场应力等值线,分析全场应力分布。利用叠加原理,计算出法向分布力作用在平板表面的位移场和应力场。本文方法收敛性快,计算简单。为此类问题的工程计算提供有效的方法。 Based on the Green’s function for isotropic half-infinite plane with a point force on the surface,the Two-dimensional Green’s function for isotropic infinite plate with a point force on the surface is solved.Firstly,the two-dimensional general solutions of isotropic materials and boundary conditions are received according to the literature.Second,two series harmonic functions are assumed,and the harmonic functions are substituted into the general solution and boundary conditions.Four recursive equations are deduced.In view of the Green’s function of an isotropic semi-infinite plane satisfied the surface condition,the recursive harmonic function can be solved,and then the displacement field and stress field can be obtained.Finally,through numerical calculation,the results of this paper are compared with the finite element method(EFM)to verify the correctness of the algorithm.By contour of stress components,the whole stress field distribution is analyzed.By using the superposition principle,the displacement field and stress field for the plate surface under the action on any direction load can be calculated.Our method has fast convergence and simple calculation.So that,it provides an effective method for such problems in engineering.
作者 童杰 苏江 柳英杰 Tong Jie;Su Jiang;Liu Yingjie(School of Robotics,Guangdong Polytechnic of Science and Technology,Zhuhai Guangdong 519090,China)
出处 《科技通报》 2021年第11期1-8,共8页 Bulletin of Science and Technology
基金 广州市科技计划项目(201904010204,202102021291) 广东省教育厅特色创新项目(2019GKTSCX031,2019GKTSCX032) 广东省普通高校工程技术中心项目(2021GCZX018)
关键词 各向同性板 格林函数 二维通解 调和函数 isotropic infinite plate green′s function two-dimensional general solutions harmonic functions
  • 相关文献

参考文献6

二级参考文献68

  • 1许金泉,陈永清,杨震.板材自由表面受法向集中力时的理论解[J].固体力学学报,2004,25(4):394-398. 被引量:4
  • 2胡奈赛,徐可为,何家文.涂、镀层的结合强度评定[J].中国表面工程,1998,11(1):31-35. 被引量:34
  • 3Li Y Q, Xu J Q, Fu L D. Fundamental solution for bonded materials with a free surface parallel to the interface. Part Ⅰ: Solution of concentrated forces acting at the inside of the material with a free surface [J]. International Journal of Solids and Structures, 2004, 41(24-25) :7075-7089.
  • 4Timoshinko S P, Goodier J N. Theory of Elasticity [M]. McGraw Hill Inc. ,1987.
  • 5Dauskardt R H,Lane M, Ma Q,Krishna N. Adhesion and debonding of multi-layer thin film structures [J]. Engineering fracture mechanics, 1998,61 : 141-162.
  • 6Miller R A. Current status of thermal barrier coating - an overview [J]. Surface and Technology, 1987,30:1- 11.
  • 7Giannakopoulos E,Suresh S. Indentation of solids with gradients in elastic properties:Part Ⅰ. Point force [J]. Internation Journal of Solids and Structures, 1996,34 (19):2357-2392.
  • 8Schwarzer N, Richter F. The elastic field in a coated haft-space under Hertzian pressure distribution [J]. Surface and Coatings Technology, 1999,114 :292-304.
  • 9Balkan H,Madenci E. Thermal loading of a thin layer with circular debonding over a substrate [J]. International Journal of Fracture,1998,91:217-231.
  • 10Xu J Q,Mutoh Y. A normal force on the free surface of a coated material [ J]. Journal of Elasticity, 2003, 73:147-164.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部