期刊文献+

18650型锂电池放电过程的瞬态热模型与电压模拟 被引量:1

Dynamic Thermal Modeling and Voltage Distribution Simulation for 18650-type Lithium-ion Battery Under Discharge Cycles
下载PDF
导出
摘要 锂电池的热性能研究直接影响纯电动和混合动力汽车运行的安全性,目前多数锂电池单体的热模型仅能够预测稳态温度场,很难模拟和估计工作状态较长的瞬态温度场。本文针对18650型锂电池的电化学特性,建立单体电池在不同放电倍率工况下的瞬态温度模型,并进行电压分布模拟比较。充放电实验的电流倍率为1C恒流小电流和4C恒流大电流,在风冷方式下获得实验数据,提供单体电池热行为和瞬态温度场的基础数据,利用ANSYS CFD软件建立瞬态温度场的数学模型,并拟合电压分布曲线。实验结果表明,本文提出的瞬态热模型具有较高的估计精度,并得出随着充放电倍率增加单体电池表面温度的变化规律。 Study of thermal performance in lithium-ion battery cell is crucial which directly affects the vehicles safety.Most available thermal models for lithium-ion battery cell predicts only steady-state temperature field.This paper presents a mathematical model to predict the transient temperature and voltage distributions of 18650 lithium-ion battery at different discharge rates.In order to provide quantitative data regarding thermal behavior of lithium-ion batteries,the lithium-ion battery cell is tested inside the lab with an air-cooling method by four thermocouples mounted on the battery surface under constant current discharge rates of 1 C and 4 C.The experimental results show that the model predictions are in good agreement with experimental data for temperature and voltage profiles.The highest temperature is 46.86°C at 4 C discharge rate as obtained from simulation.The results also indicate the change rule of the battery surface temperature with the increased C-rates.
作者 汪秋婷 戚伟 肖铎 Wang Qiuting;Qi Wei;Xiao Duo(Department of Information and Electric Engineering,Zhejiang University City College,Hangzhou 310015,China)
出处 《科技通报》 2020年第2期45-49,共5页 Bulletin of Science and Technology
基金 浙江省自然科学基金项目(LQ16F010004)
关键词 锂电池 瞬态温度 伪二维模型 电压分布 热行为 ANSYS CFD软件 lithium-ion battery dynamic temperature P2D voltage distributions thermal performance ANSYS CFD software
  • 相关文献

参考文献3

二级参考文献17

  • 1吴友宇,梁红.电动汽车动力电池均衡方法研究[J].汽车工程,2004,26(4):382-385. 被引量:42
  • 2Roth E Peter. Thermal Characterization of Li-ion Cells Using Calorimetric Techniques[A].Las Vegas,Nevada,2000.962-967.
  • 3Abmad A Pesaran,Andreas Vlahinos,Steven D Burch. Thermal Performance of EV and HEV Battery Modules and Packs[A].Orlando,Florida,1997.
  • 4Guo Guifang,Long Bo,Cheng Bo. Three-dimensional Thermal Finite Element Modeling of Lithium-ion Battery in Thermal Abuse Application[J].Journal of Power Sources,2010,(08):2393-2398.doi:10.1016/j.jpowsour.2009.10.090.
  • 5Christophe Forgez,Dinh Vinh Do,Guy Friedrich. Thermal Modeling of a Cylindrical LiFePO4/graphite Lithium-ion Battery[J].Journal of Power Sources,2010,(09):2961-2968.
  • 6Chen S C,Wan C C,Wang Y Y. Thermal Analysis of Lithium-ion Batteries[J].Journal of Power Sources,2005,(01):111-124.doi:10.1016/j.jpowsour.2004.05.064.
  • 7Noboru Sato. Thermal Behavior Analysis of Lithium-ion Batteries for Electric and Hybrid Vehicles[J].Journal of Power Sources,2001,(1-2):70-77.
  • 8Smith Kandler,Wang Chao-Yang. Power and Thermal Characterization of a Lithium-ion Battery Pack for Hybrid-electric Vehicles[J].Journal of Power Sources,2006,(01):662-673.doi:10.1016/j.jpowsour.2006.01.038.
  • 9任泽霈.对流换热[M]北京:高等教育出版社,199864-80.
  • 10张志杰,李茂德.锂离子动力电池温升特性的研究[J].汽车工程,2010,32(4):320-323. 被引量:46

共引文献19

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部