期刊文献+

隧洞移动机器人里程计激光雷达融合定位 被引量:1

Mobile Robot Localization with Odometry and Lidar Fusion in Tunnel
下载PDF
导出
摘要 在隧洞局部湿滑、不平整环境中,使用GPS对机器人进行定位会不准确甚至失效,仅使用里程计定位长时间累积误差会比较大。为了尽量减小机器人在这种环境中的定位误差,设计了一种定位方法,即先使用UMBmark算法离线校核机器人系统关键参数,且校核前机器人系统误差为0.3719 m,校核之后机器人的系统误差为0.2915 m,根据该算法定位精度评判依据,得出里程计定位精度提高了28%.然后利用扩展卡尔曼滤波算法,融合激光雷达和里程计进行SLAM,MATLAB仿真实验结果表明,融合前机器人x轴平均误差为2.047 m,y轴平均误差为1.245 m,航向平均误差为0.196 rad;在用EKF-SLAM融合激光雷达之后,机器人x轴平均误差为0.093 m,y轴平均误差为0.014 m,航向平均误差为0.003 rad。机器人平均位姿误差至少减小了一个数量级。仿真和实验结果证明了本文设计的提高隧洞局部环境定位精度方法的有效性。 In the local wet and slippery environment of the tunnel,using GPS for localization of the robot will be inaccurate or even invalid,The long-term cumulative error is relatively large only using the odometry.In order to minimize the localization error of the robot in this environment,designing a localization method,firstly using UMBmark algorithm to correct key parameters of the robot,the systematic error before correction is 0.3719 m,that is 0.2915 m after correction,and according to the localization accuracy evaluation of the algorithm.The localization accuracy has been improved by 28%.Then using the extended Kalman filter(EKF)algorithm,the lidar and odometry are fused to perform SLAM.Before fusion,average error ofxaxis is 2.047 m,y axis is 1.245 m,heading is 0.196 rad.And after fusion,average error ofxaxis is 0.093 m,y axis is 0.014 m,heading is 0.003 rad.The simulation results of MATLAB show that the average pose error of the robot is reduced at least by an order of magnitude after fusion.The simulation and experimental results prove the effectiveness of the proposed method for improving the local environmental localization accuracy of the tunnel.
作者 谢勇 刘晓日 汪晓波 王斌锐 Xie Yong;Liu Xiaori;Wang Xiaobo;Wang Binrui(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《科技通报》 2020年第1期93-98,104,共7页 Bulletin of Science and Technology
基金 国家重点研发计划(2017YFC0804609)
关键词 移动机器人 定位 系统误差 非系统误差 扩展卡尔曼滤波 mobile robot localization systematic error non-systematic error EKF
  • 相关文献

参考文献5

二级参考文献42

  • 1顾文华,周波,戴先中.基于ICP匹配算法的室内移动机器人定位[J].华中科技大学学报(自然科学版),2013,41(S1):262-266. 被引量:23
  • 2王卫华,熊有伦,孙容磊.测程法系统误差的测量与校核[J].机器人,2004,26(5):454-460. 被引量:12
  • 3于金霞,蔡自兴,邹小兵,段琢华.基于神经网络辨识的移动机器人航向误差校准方法[J].中南大学学报(自然科学版),2005,36(5):745-750. 被引量:8
  • 4钱钧,杨汝清,王晨,周启龙,杨明.基于路标的智能车辆定位[J].上海交通大学学报,2007,41(6):894-898. 被引量:15
  • 5LeonardJohnJ,Durrant-WhyteHughF.Mobilerobotlocali-zationbytrackinggeometricbeacons[J].IEEETransactionsonRoboticsandAutomation,1991,7(3):376-382.
  • 6GanganathN,LeungH.Mobilerobotlocalizationusingodome-tryandKinectsensor[C]∥Proceedingsof2012IEEEInternationalConferenceonEmergingSignalProcessingApplications.LasVegas:IEEE,2012:91-94.
  • 7KokSengChong,KleemanL.Accurateodometryanderrormodellingforamobilerobot[C]∥Proceedingsof1997IEEEInternationalConferenceonRoboticsandAutoma-tion.Albuquerque:IEEE,1997:2783-2788.
  • 8BorensteinJ,FengL.Measurementandcorrectionofsys-tematicodometryerrorsinmobilerobots[J].IEEETransac-tionsonRoboticsandAutomation,1996,12(6):869-880.
  • 9BorensteinJ,FengL.Correctionofsystematicodometryer-rorsinmobilerobots[C]∥Proceedingsof1995IEEE/RSJInternationalConferenceonIntelligentRobotsandSystems.Pittsburgh:IEEE,1995:569-574.
  • 10BorensteinJ,FengL.Gyrodometry:anewmethodforcom-biningdatafromgyrosandodometryinmobilerobots[C]∥Proceedingsof1996IEEEInternationalConferenceonRoboticsandAutomation.Minneapolis:IEEE,1996:423-428.

共引文献62

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部