摘要
气动执行器的低成本制造和快速响应特性已经吸引了软体机器人领域研究者的广泛关注。仿生设计作为气动执行器主流设计理念之一,为研究者提供了灵感源泉,大多数现有的执行器都基于仿生设计。文中提出了一种仿蚯蚓设计的爬行机器人用气动软执行器。该执行器由多个网状气腔组成,并通过有限元分析优化了其主要参数,使其能够执行各种复杂动作。此外,在大多数现有的气动执行器中,气源由空气泵提供,而文中设计的执行器则由化学反应驱动。通过控制原材料的类型和比例,引发不同的化学反应,导致周期性的吸气和呼气,使执行器能够按照预期执行重复性动作。根据这些原理,将展示3种不同的步态,这种驱动方式可以有效地与爬行机器人的机械运动相结合,增强软体机器人的自主性和环境适应性。
The low manufacturing cost and fast response speed of pneumatic actuators have attracted widespread attention from researchers in the field of soft robotics.Biomimetic design,as one of the mainstream design concepts of pneumatic actuators,has provided researchers with a source of inspiration.Most existing actuators are based on biomimetic design.In this paper,a pneumatic soft actuator with a biomimetic worm-like design for crawling robots is proposed.This actuator is composed of multiple mesh-like air chambers,and its main parameters are optimized through finite element analysis,enabling it to perform various complex movements.Moreover,in most existing pneumatic actuators,the air source is supplied by air pumps,while the designed actuator in this paper is powered by chemical reactions.By controlling the types and ratios of raw materials,different chemical reactions occur,leading to periodic inhalation and exhalation,allowing the actuator to perform repetitive movements as intended.According to such principles,three different gaits will be demonstrated.This driving method can effectively combine with the mechanical motion of the crawling robot,enhancing the autonomy and environmental adaptability of soft robots.
作者
穆俊齐
魏奕扬
侯旭萍
宗小峰
MU Junqi;WEI Yiyang;HOU Xuping;ZONG Xiaofeng(School of Automation,China University of Geosciences,Wuhan 430074;Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems,Wuhan 430074;Engineering Research Center of Intelligent Technology for Geo-Exploration,Ministry of Education,Wuhan 430074)
出处
《机械设计》
CSCD
北大核心
2024年第S02期7-13,共7页
Journal of Machine Design
基金
湖北省自然科学基金杰出青年项目(2022CFA041)
关键词
软体机器人
气动驱动器
仿真设计
化学驱动
soft robot
pneumatic actuation
bionics design
chemical reaction driven