期刊文献+

机场行李装载机器人的轨迹规划研究 被引量:7

Research on the trajectory planning of the airport luggage loading robot
下载PDF
导出
摘要 以机场行李装载机器人为研究对象,对其装载作业中的轨迹规划进行了研究。结合实际需求,对机器人末端轨迹设置关键路径点,建立点到点的运动轨迹。用MATLAB对3-3-5多项式插值法、3-5-3多项式插值法、4-3-4多项式插值法、5-3-5多项式插值法、3-4-5多项式插值法进行仿真。对比仿真结果,5-3-5多项式插值法在参数曲线光滑连续方面优于其他几种方法。以时间最短为优化目标,用遗传算法对5-3-5多项式插值方法进行优化。结果表明,该方法可以在时间最优的同时,各关节角度、角速度和角加速度曲线光滑连续,机器人可以平稳运行,顺利避开障碍物,满足设计要求。 This article focuses on the trajectory planning of the airport baggage loading robot when the loading tasks are performed.In combination with practical needs,the key path points are set for the robot’s end trajectory,and the point-to-point motion trajectory is worked out.MATLAB is adopted to simulate the 3-3-5 polynomial interpolation,3-5-3 polynomial interpolation,4-3-4 polynomial interpolation,5-3-5 polynomial interpolation and 3-4-5 polynomial interpolation.The simulation results show that 5-3-5 polynomial interpolation with smooth and continuous parametric curves is superior to its counterparts.With the shortest time as the goal of optimization,the genetic algorithm is adopted to optimize the 5-3-5 polynomial interpolation.The results show that while time is optimized,the angle,velocity and acceleration curves of each joint are smooth and continuous.The robot runs smoothly and all obstacles are avoided,thus meeting the design requirements.
作者 洪振宇 赵冲 张志旭 张聪 彭松伟 HONG Zhen-yu;ZHAO Chong;ZHANG Zhi-xu;ZHANG Cong;PENG Song-wei(School of Aviation Engineering,Civil Aviation University of China,Tianjin 300300;Basic Training Center,Civil Aviation University of China,Tianjin 300300)
出处 《机械设计》 CSCD 北大核心 2020年第3期101-106,共6页 Journal of Machine Design
基金 国家自然科学委员会与中国民用航空局联合资助项目(U1733128) 中央高校基本科研业务费项目中国民航大学专项资助项目(3122018D038).
关键词 装载机器人 轨迹规划 遗传算法 时间最优 loading robot trajectory planning genetic algorithm time optimization
  • 相关文献

参考文献6

二级参考文献44

  • 1恽为民,席裕庚.基于遗传算法的机器人关节空间最优运动规划[J].机器人,1995,17(4):206-217. 被引量:15
  • 2严勇杰,朱齐丹,蒋丞.基于OpenGL的机械臂控制系统仿真平台研究[J].计算机仿真,2006,23(8):252-257. 被引量:14
  • 3CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.
  • 4LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Trans. Automat. Contr., 1983, 28(12): 1 066-1 074.
  • 5GASPARETTO A, ZANOTTO V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (6): 415-426.
  • 6SHILLER Z. Time-energy optimal control of articulated systems with geometric path constraints[J]. Trans. ASME J. Dynam. Syst. Meas. Control, 1996, 118: 139-143.
  • 7SARAMAGO S F P, STEFFEN V J R. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J]. Mech. Math. Theory, 1998, 33(7): 883-894.
  • 8SARAMAGO S F P, STEFFEN V J R. Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J]. Mech. Math. Theory, 2000, 35(8): 1 079-1 094.
  • 9CHETTIBI T, LEHTIHET H E, HADDAD M, et al. Minimum cost trajectory planning for industrial robots[J]. European Journal of Mechanics A/Solids, 2004, 23(3): 703-715.
  • 10LUO X, FAN X P, ZHANG H, et al. Integrated optimization of trajectory planning for robot manipulators based on intensified evolutionary programming[C]//Proc. International Conference on Robotics and Biomimetics, Shenyang, China. Los Angeles: IEEE, 2004: 546-551.

共引文献266

同被引文献38

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部