期刊文献+

基于Web of Science核心合集数据库的冠状病毒相关文献分析 被引量:2

A bibliometric analysis of coronavirus-related research based on Web of Science core database
原文传递
导出
摘要 目的系统分析全球冠状病毒领域的研究现状及发展趋势,为新型冠状病毒肺炎(COVID-19)大流行的全球冠状病毒研究提供参考。方法基于Web of Science核心合集数据库,综合应用Web of Science统计分析工具和CiteSpace软件,使用文献计量学、可视化分析等方法分析全球冠状病毒研究的现状和趋势。结果冠状病毒领域的论文数量在年份上与疫情暴发高度相关,其中美国和中国是该领域发表论文数量最多的国家。以袁国勇为首的香港大学研究团队在国际上有较大的影响力。大多数论文集中在对病毒本身特征的研究,而对疫苗和药物等防治手段的研究较少。结论全球应当持续加强对冠状病毒疾病防治方法的研究,以应对未来可能发生的冠状病毒相关公共卫生事件。 Objective To analyze systematically the global developments in the research of coronavirus in order to pro-vide reference for global coronavirus research during the COVID-19 pandemic.Methods Based on Web of Science corecollection database and using CiteSpace and the statistical analysis tools on Web of Science,the statusquo and develop-ments of coronavirus-related research were explored by bibliometric and visual analysis.Results The number of paperspublished per year in the field of coronavirus was closely related to the outbreak of epidemics.USA and China were thecountries with the largest number of publications.The research team from the University of Hong Kong led by KwokyungYuen had a strong international presence.Most papers focused on the characteristics of the virus itself,while those on theprevention or treatment of diseases caused by the virus were smaller in number.Conclusion In order to respond to futurecoronavirus-related public health events,global research on ways to combat coronavirus diseases should be continuouslystrengthened.
作者 辛泽西 宋蔷 毛秀秀 王磊 XIN Jesse ZX;SONG Qiang;MAO Xiu⁃xiu;WANG Lei(Department of Military Medicine and Technology Analysis,Institute of Health Service and Transfusion Medicine,Academy of Military Medical Sciences,Academy of Military Sciences,Beijing 100850,China)
出处 《军事医学》 CAS 北大核心 2020年第5期362-369,共8页 Military Medical Sciences
关键词 冠状病毒属 文献计量学 可视化分析 Web of Science coronavirus bibliometrics visualization analysis Web of Science
  • 相关文献

参考文献4

二级参考文献79

  • 1Kleinberg J.Bursty and hierarchical structure in streams.Proceedings of Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(pp.91-101),Edmonton,Alberta,Canada:ACM Press,2002.
  • 2Freeman L C.Centrality in social networks:Conceptual clarification.Social Networks,1979,1:215-239.
  • 3Price D D.Networks of scientific papers.Science,1965,149:510-515.
  • 4van Raan A.On growth,ageing,and fractal differentiation of science.Scientometrics,2000,47(2):347-362.
  • 5Abt H A.Why some papers have long citation lifetimes.Nature,1998,395:756-757.
  • 6Bak P,Chen K.Self-organized criticality.Scientific American,1991,264(1):46-53.
  • 7Chen C,Morris S.Visualizing evolving networks:Minimum spanning trees versus pathfinder networks.Proceedings of IEEE Symposium on Information Visualization(pp.67-74),Seattle,Washington:IEEE Computer Society Press,2003.
  • 8Small H G,Griffith B C.The structure of scientific literatures i:Identifying and graphing specialties.Science Studies,1974,4:17-40.
  • 9Garfield E.Scientography:Mapping the tracks of science.Current Contents:Social & Behavioural Sciences,1994,7(45):5-10.
  • 10Garfield E H,S I,Torpie R J.The use of citation data in writing the history of science.Philadelphia:Institute for Scientific Information,1964.

共引文献1411

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部