期刊文献+

基于第二粘性的Navier-Stokes方程组求解正激波结构 被引量:3

Investigation of Normal Shock Structure by Using Navier-Stokes Equations with the Second Viscosity
原文传递
导出
摘要 为考察气体第二粘性(体积粘性)对正激波内部流动的影响机制,数值求解含第二粘性的一维Navier-Stokes方程组.结果表明:第二粘性对激波内部的密度、热流和能量分布等物理量具有抹平效应,导致热流和熵流的峰值减小、激波厚度增加,体积粘性耗散的增加使得一部分机械能转化为内能;考虑第二粘性所计算的密度分布和激波厚度大为改善,与实验数据吻合较好;当马赫数为1.2≤Ma≤10,激波内部的Knudsen数满足0.12≤Kn≤0.4,对于马赫数Ma≤4.0的激波内部流动,考虑第二粘性的连续流Navier-Stokes方程组能够准确地模拟正激波结构. To investigate influence mechanism of the second viscosity on internal flow of a normal shock wave,one-dimensional Navier-Stokes equations are numerically solved.It indicates that the second viscosity has a smoothing effect on density,heat flow and energy distribution in the shock wave,which results in a decrease of peak value of heat and entropy flows,and an increase of shock thickness.Due to the production of normal viscous dissipation,some lost mechanical energy is converted into internal energy.As considering the second viscosity,density distribution and shock thickness are greatly improved.They are in good agreement with experimental data.In addition,Knudsen number is obtained 0.12≤Kn≤0.4 within Mach number range from 1.2 to 10.It indicates that Navier-Stokes equations with the second viscosity simulate normal shock structure more accurately.
作者 李馨东 赵英奎 胡宗民 姜宗林 LI Xindong;ZHAO Yingkui;HU Zongmin;JIANG Zonglin(Institute of Applied Physics and Computational Mathematics,Beijing 100094,China;Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China)
出处 《计算物理》 EI CSCD 北大核心 2020年第5期505-513,共9页 Chinese Journal of Computational Physics
基金 中国博士后科学基金(2017M610821) 国家自然科学基金青年基金(11902042)资助项目
关键词 NAVIER-STOKES方程 Stokes假设 第二粘性 体积粘性 正激波结构 Navier-Stokes equations Stokes assumption the second viscosity bulk viscosity shock wave structure
  • 相关文献

参考文献4

二级参考文献61

  • 1滕宏辉,张德良,李辉煌,姜宗林.用环形激波聚焦实现爆轰波直接起爆的数值模拟[J].爆炸与冲击,2005,25(6):512-518. 被引量:14
  • 2董刚,叶经方,范宝春.激波聚焦反射的实验和数值研究[J].高压物理学报,2006,20(4):359-364. 被引量:8
  • 3查普曼S 刘大有等(译).非均匀气体的数学理论[M].北京:科学出版社,1985.46.
  • 4沈青,1990年
  • 5LIEPMANN H W, ROSHKO A. Elements of gas dynamics [ M ]. Wiley, New York, 1957.
  • 6PHAM-VAN-DIEP G, ERWIN D, MUNTZ E P. Nonequilibrium molecular motion in a hypersonic shock wave [ J ]. Science, 1989, 245(2): 624-626.
  • 7SALOMONS E , MARESCHAL M. Usefulness of the Burner description of strong shock waves [ J ]. Physical Review Letters, 1992, 69(2): 269-272.
  • 8CROUSEILLES N, DEGOND P ,LEMOU M. A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation[J]. Journal of Computational Physics, 2004, 199: 776-808.
  • 9BIRD G A. Aspects of the structure of strong shock waves[J].Phys. Fluids, 1970, 13(5): 1172-1177.
  • 10BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford University Press, London, 1994.

共引文献9

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部