期刊文献+

卷积神经网络在航测图像自动识别中的应用探讨

Discussion on the Application of Convolution Neural Network in Automatic Recognition of Aerial Survey Image
下载PDF
导出
摘要 针对无人机航测影像的目标识别问题,结合目前已有相关开发语言及模型,探讨在航测内业采集过程中加入人工智能识别技术实现地物自动识别和绘制的可行性。首先,分析近年来计算机图像识别方面的人工智能模型,结合航空影像固有特性,通过研究识别后与已有绘图软件交互。其次,设计了一组基于经典卷积神经网络的航测影像自动识别实验。结果表明,VGG16模型能够有效提升高分辨率和复杂背景的航拍图像的识别准确率,在较小目标(如路灯等)的识别准确率较低。以此给出输入图像精细化预处理、原数据集数据增强与多次迭代、构建具有双重损失函数的糅合模型3个方面的改进措施,为后续进一步的研究确定了方向。 Aiming at the object recognition problem of UAV aerial survey image,combined with the existing development language and model,the feasibility of adding artificial intelligence recognition technology to the process of aerial survey internal business acquisition to realize automatic recognition and rendering of ground objects was discussed.Firstly,the artificial intelligence model of computer image recognition in recent years is analyzed,and combined with the inherent characteristics of aerial image,through the study of recognition and interaction with the existing graphics software.Secondly,a group of automatic recognition experiments of aerial survey images based on classical convolutional neural networks arc designed.The results show that the VGG16 model can effectively improve the recognition accuracy of aerial images with high resolution and complex background,while the recognition accuracy of small targets such as street lights is low.In this paper,three improvement measures of input image refinement preprocessing,original data set data enhancement and multiple iterations,and the mash-up model with double loss function arc given.The direction is determined for the follow-up further research.
作者 孙健飞 王占岗 陶恩海 SUN Jian-fei;WANG Zhan-gang;TAO En-hai(The Sixth Geological Brigade of Jiangsu Geology&Mineral Exploration Bureau,Lianyungang Jiangsu 222023,China;Guanyun County and Urban Rural Planning Service Center,Lianyungang Jiangsu 222200,China;Jiangsu Jianjin Information Industry Company,Lianyungang Jiangsu 222300,China)
出处 《现代测绘》 2023年第5期48-52,共5页 Modern Surveying and Mapping
基金 江苏省地质局基金项目(2022KY09)
关键词 卷积神经网络CNN VGG-NET模型 航测 内业采集 目标检测 convolutional neural network VGGNet model aerial survey office data capturing target detection
  • 相关文献

参考文献5

二级参考文献38

  • 1尹文生,罗瑜林,李世其.基于OpenCV的摄像机标定[J].计算机工程与设计,2007,28(1):197-199. 被引量:39
  • 2Nishino K,Kratz L,Lombardi S.Bayesian defogging[J].International Journal of Computer Vision,2012,98(3):263-278.
  • 3Wang Qing,Ward R K.Fast image/video contrast enhancement based on weighted thresholded histogram equalization[J].IEEE Transactions on Consumer Electronics,2007,53(2):757-764.
  • 4Jobson D J,Rahman Z U,Woodell G A.A multiscale retinex for bridging the gap between color images and the human observation of scenes[J].IEEE Transactions on Image Processing,1997,6(7):965-976.
  • 5Tan R T.Visibility in bad weather from a single image[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,Anchorage,USA,Jun 24-26,2008.Piscataway,NJ,USA:IEEE,2008:1-8.
  • 6Nayar S K,Narasimhan S G.Vision in bad weather[C]//Proceedings of the 7th IEEE International Conference on Computer Vision,Kerkyra,Greece,Sep 20-27,1999.Piscataway,NJ,USA:IEEE,1999,2:820-827.
  • 7Oakley J P,Satherley B L.Improving image quality in poor visibility conditions using model for degradation[J].IEEE Transactions on Image Processing,1988,7(2):167-179.
  • 8Narasimhan S G,Nayar S K.Chromatic framework for vision in bad weather[C]//Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition,Hilton Head Island,USA,Jun 13-15,2000.Piscataway,NJ,USA:IEEE,2000:598-605.
  • 9Fattal R.Single image dehazing[J].ACM Transactions on Graph,2008,27(3):72.
  • 10Meng Gaofeng,Wang Ying,Duan Jiangyong,et al.Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision,Sydney,Australia,Dec 1-8,2013.Piscataway,NJ,USA:IEEE,2013:617-624.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部