期刊文献+

燃料电池空气供应系统冷却单元仿真与控制

Simulation and Control of Cooling Unit in Fuel Cell Air Supply System
原文传递
导出
摘要 稳定适宜的空气温度是燃料电池电堆保持寿命、高效运行的关键,这需要对空气供应系统冷却单元进行合理的结构与控制策略的设计。冷却单元通过散热器、冷却水泵和中冷器等零件,完成对空气压缩机的冷却和对中冷器出口温度的控制。基于Simulink仿真平台,对串联和并联两种冷却单元结构进行了仿真分析,并采用积分分离的PID控制算法对中冷器出口空气温度进行控制。结果表明:冷机启动过程中,保持一定的冷却液流速,可以明显加快空气的升温速率;串联和并联结构中,中冷器出口空气温度均主要由散热器的风扇转速决定,而冷却液流速和并联结构的比例阀开度对其影响较小;串联结构的中冷器出口空气温度明显低于并联结构的温度;使用积分分离的PID控制算法能够兼顾中冷器出口空气的升温速率和控制精度,并可保证空气压缩机温度在正常范围内。 Stable and suitable air temperature is the key to maintain the life and high efficiency of the fuel cell stack,which requires the design of a reasonable structure and control algorithm for the cooling unit of the air supply system.The cooling unit realizes the cooling of air compressor and the control of outlet temperature of intercooler by a radiator,cooling water pump and intercooler.In this paper,based on the Simulink simulation platform,a series cooling unit and parallel cooling unit aresimulated,and the PID control algorithm with integral separation is used to control the outlet air temperature of the intercooler.The results show that:(1)during the start-up process,keepinga certain coolant flow rate can significantly accelerate the air heating rate;(2)in the two structures,the outlet air temperature of the intercooler is mainly determined by the fan speed of the radiator,while the coolant flow rate and the opening of the proportional valve of the parallel structure have little effect on it;(3)at the same speed of radiator fan and water pump,the outlet air temperature of the intercooler in series structure is significantly lower than that in the parallel structure;(4)the integral separation PID controlalgorithm can take into account the heating rate and control accuracy of the intercooler outlet air,and ensure the air compressor temperature in thesafe range.
出处 《机电一体化》 2021年第1期16-23,31,共9页 Mechatronics
基金 广东省重点领域研发计划(课题编号:2019B090909002)
关键词 质子交换膜燃料电池空气供应系统 冷却单元模型 积分分离PID控制算法 proton exchange membrane fuel cellair supply system cooling unit model integral separation PID control algorithm
  • 相关文献

参考文献2

二级参考文献12

  • 1邵庆龙,曹广益,朱新坚.质子交换膜燃料电池电堆温度的非线性控制[J].系统仿真学报,2004,16(11):2584-2586. 被引量:7
  • 2马天才,孙泽昌,许思传.质子交换膜燃料电池温度控制仿真模型[J].系统仿真学报,2005,17(3):548-551. 被引量:19
  • 3杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2010:43.
  • 4Prodromos D., Costas K. Dynamic compensation of measurable disturbances in non-linear multivariable systems [J]. Int.. J. control, 1993, 58(6): 1279-1301.
  • 5Takamasa Ito, Jinliang Yuan. Analysis of intercooler in PEM fuel cell system [C]// 2004 ASME Heat Transefer/Fluids Engineering Summer Conference, July 11-15, 2004, Charlotte, North Carolina USA. New York, USA: ASME, 2004:1-8.
  • 6Takamasa Ito, Jinliang Yuan, Bengt Sunden. Analysis of compact heat exchangers as an intercooler in PEMFC systems [C]// 2005ASME Heat Transfer Summer Conference, July 17-22, 2005, San Francisco, California, USA. New York, USA: ASME, 2004:1-7.
  • 7Guy B Marina. Advances in Chemical Engineering-Fuel Cell Engineering,Volume41 [M]. The Netherlands: ELSEVIER, 2012.
  • 8Felix Grasser, Alfred C Ruler. A fully analytical PEM fuel cell system model for control applications [C]// Industry Applications Conference, 2006, 41st IAS Annual Meeting. Conference Record of the 2006 IEEE. USA: IEEE, 2006, 5: 2162-2168.
  • 9Grujicic M ChittajaUu, E H Law, et al. Model-based control strategies in the dynamic interaction of air supply and fuel cell [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (S0957-6509), 2004,218(7): 1-13.
  • 10Jay T Pukrushpan, Anna G Stefanopoulou, Huei Peng. Control of Fuel Cell Power Systems [M] USA: Springer, 2004: 2%28.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部