期刊文献+

硒化亚锗薄膜太阳能电池研究进展 被引量:5

Recent Progress in GeSe Thin-Film Solar Cells
原文传递
导出
摘要 硒化亚锗(GeSe)禁带宽度合适(≈1.14 eV),吸光系数大(>10^(5)cm^(−1)),迁移率高(128.7 cm^(2)·V^(-1)·s^(-1)),价带顶中包含反键轨道赋予了其本征缺陷良性,理论光电转换效率可达30%以上,适合于制作高效薄膜太阳能电池;同时GeSe具有毒性低、储量丰富、组分简单及稳定性强等优点,还易于通过低成本的升华法进行薄膜制备,从而在大规模应用方面具有巨大潜力.以GeSe为研究对象,介绍了GeSe基本性质,总结了GeSe薄膜制备研究进展,阐述了GeSe薄膜太阳能电池研究现状,并展望了其今后发展方向与趋势. Germanium monoselenide(GeSe)is a promising photovoltaic absorber material for thin-film solar cells due to its appropriate bandgap(about 1.14 eV),high absorption coefficient(>10^(5)cm^(−1)at visible light),large carrier mobility(about 128.7 cm^(2)·V^(-1)·s^(-1))and benign defect properties arising from its antibonding states at the valence band maximum.The theoretical Shockley-Quiesser efficiency limit for GeSe single junction solar cells determined by its bandgap is above 30%.Moreover,this simple binary compound possesses earth-abundant,nontoxic constituents and high stability in ambient atmosphere.The easy sublimation feature of GeSe enables the deposition of high-quality films through an industrial close-space sublimation method.The fundamental properties of GeSe with emphasis on the material,optical,electrical,and defect properties are introduced,and then the recent progress of fabrication of GeSe thin films and solar cells is summarized.Finally,a brief perspective on the further development of GeSe thin-film solar cells is provided.
作者 闫彬 薛丁江 胡劲松 Yan Bin;Xue Ding-Jiang;Hu Jin-Song(CAS Key Laboratory of Molecular Nanostructure and Nanotechnology,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190)
出处 《化学学报》 SCIE CAS CSCD 北大核心 2022年第6期797-804,共8页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21922512,21875264)资助.
关键词 GeSe 太阳能电池 光伏 薄膜制备 缺陷性质 GeSe solar cells photovoltaics thin-film fabrication defect property
  • 相关文献

参考文献4

二级参考文献58

  • 1杨英,林飞宇,朱从潭,陈甜,马书鹏,罗媛,朱刘,郭学益.无机钙钛矿太阳能电池稳定性研究进展[J].化学学报,2020,78(3):217-231. 被引量:11
  • 2Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H, Mitzi D B 2014 Adv. Mater. DOI: 10.1002/adma.201402373.
  • 3Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506.
  • 4Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A 2 705.
  • 5Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704.
  • 6Limpinsel M, Farhi N, Berry N, Lindemuth J, Perkins C L, Lin Q, Law M 2014 Energy Environ. Sci. 7 1974.
  • 7Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201400496.
  • 8Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201301846.
  • 9Madelung O 2004 Semiconductor: Data Handbook (3rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) DOI: 10.1007/106817271042.
  • 10Filip M R, Patrick C E, Giustino F 2013 Phys. Rev. B 87 205125.

共引文献43

同被引文献52

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部