摘要
近年来,呼出气检测在糖尿病领域的研究引起了广泛关注。糖尿病作为一种代谢性疾病,利用现代检测分析方法,如气相色谱、质谱、光谱和传感器检测等,实现了对糖尿病患者呼出气体的检测和监测。本综述概述了糖尿病患者呼出气体中一些挥发性有机化合物的成分及其来源,并评估了以机器学习为基础的算法在支持糖尿病及其并发症风险预测模型方面的应用。此外,对国内外糖尿病呼出气检测的发展与应用进行了探讨,并对其局限性和未来潜在应用进行了评价。
In recent years,there has been a significant surge of interest in exploring exhaled gas detection within the context of diabetes research.This burgeoning field has attracted considerable attention due to its potential implications for the early detection and management of diabetes mellitus.Through a comprehensive synthesis of 114 pertinent scholarly works,researchers have delved into the intricate association between diabetes mellitus and exhaled gas detection.Leveraging state-of-the-art detection and analysis methodologies,including gas chromatography,mass spectrometry,spectroscopy,and sensor-based detection systems.This review provides an overview of the composition of some volatile organic compounds and their sources in the exhaled gas of diabetic patients.Furthermore,the application of machine learning-based algorithms has been scrutinized for its potential to facilitate predictive modeling of diabetes risk and associated complications.This comprehensive review also examines the national and international landscape of the development and application of exhaled gas detection methodologies in diabetes research,offering critical insights into current limitations and potential avenues for future research and application.
作者
吴昊坪
李磊
曾睿
祝雨晨
赵斌
冯飞
Haoping Wu;Lei Li;Rui Zeng;Yuchen Zhu;Bin Zhao;Fei Feng(College of Medical Information Engineering,Chengdu University of Traditional Chinese Medicine,Chengdu 610036,China;State Key Laboratory of Transducer Technology,Shanghai Institute of Microsystemand Information Technology,Chinese Academy of Sciences,Shanghai 200050,China)
出处
《化学进展》
SCIE
CAS
CSCD
北大核心
2024年第4期601-611,共11页
Progress in Chemistry
基金
国家重点研发计划(No.2018YFA0208504)
上海市“科技创新行动计划”医学创新研究专项(No.22Y11900600)
国家自然科学基金委员会面上项目(No.8217142522)
关键词
呼出气体检测
糖尿病
疾病诊断
无创
丙酮
挥发性有机化合物
exhaled gas detection
diabetes mellitus
disease diagnosis
non-invasive
acetone
volatile organic compounds