期刊文献+

利用生物逆合成工具优化代谢路径

Optimizing Metabolic Pathways by Using Bioretrosynthesis Tools
原文传递
导出
摘要 生物催化因其反应条件温和、高效、特异性高和价格低廉等优点,已成为生物合成领域的一种重要技术。生物合成体系内存在一系列高度集成的代谢网络,多酶催化系统的研究在生物合成领域中已成为一个必然趋势,故基于已知产物探索其未知的多酶催化逆合成路径具有极大的意义。本综述首先介绍了多酶体系以及逆合成流程的概念,并举例说明了逆合成路径构建工具的设计方法及其优缺点。然后将其主要分为基于宿主的和无宿主的工具,对于这两种类型各列举了部分代表性逆合成工具,用以说明各自的设计流程以及差异。随后进一步讨论了人工智能助力多酶体系的可能性且对多酶路径构建工具的优化及发展进行了展望。 Biocatalysis has become an important technology in the field of biosynthesis because of its mild reaction conditions,high efficiency,high specificity and low price.There are a series of highly integrated metabolic networks in the biosynthesis system,and the study of multi-enzyme catalytic system has become an inevitable trend in the field of biosynthesis,so it is of great significance to explore the unknown multi-enzyme synthesis path based on the known products.In this review,the concepts of multi-enzyme system and retrosynthesis process are introduced.And the design methods,advantages and disadvantages of retrosynthesis tools are summarized.Then the tools are divided into host-based and host-less tools.For each of these two types,some representative retrosynthesis tools are listed to analyze their respective design processes and differences.Finally,the possibility of artificial intelligence-assisted multi-enzyme system is discussed and the optimization and development of multi-enzyme pathway construction tools are forecasted.
作者 刘夫锋 刘旭芝 李金壁 路福平 Fufeng Liu;Xuzhi Liu;Jinbi Li;Fuping Lu(College of Biotechnology,Tianjin University of Science&Technology,Tianjin 300457,China)
出处 《化学进展》 SCIE CAS CSCD 北大核心 2024年第4期501-510,共10页 Progress in Chemistry
基金 国家重点研发计划(No.2021YFC2102701)资助
  • 相关文献

参考文献9

二级参考文献31

  • 1ZHANG Chun-hong,LI Xiang-gao,GAO Yu-gang,ZHANG Lian-xue,FU Xue-qi.Synthesis and Primary Research on Antitumor Activity of Three New Panaxadiol Fatty Acid Esters[J].Chemical Research in Chinese Universities,2007,23(2):176-182. 被引量:2
  • 2Ma HW and Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformaties, 2003, 19(2) :270 -277.
  • 3Duarte NC, Herrgard MJ and Palsson BO. Reconstruction and validation of saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res, 2004, 14 (7) : 1298 - 1309.
  • 4Notebaart RA, van Enckevort FH and Francke C, et al. Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics, 2006, 7:296.
  • 5Grosu P, Townsend JP, Hartl DL and Cavaliefi D. Pathway processor: a tool for integrating whole-genome expression results into metabolic networks. Genome Res, 2002, 12(7) :1121 -1126.
  • 6Rahman SA, Advani P, Schunk R, Schrader R and Schomburg D. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics, 2005, 21(7):1189-1193.
  • 7Croes D, Couche F, Wodak SJ and van Helden J. Metabolic path- Finding:inferring relevant pathways in biochemical networks. Nucleic Acids Res, 2005, 33 (Web Server issue) :W326 -330.
  • 8McShan DC, Rao S and Shah I. PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics, 2003, 19 (13) : 1692 - 1698.
  • 9Schmidt S and Dandekar T. Gene Regulation and Metabolism:Post- genomic Computational Approaches, Chapter 8. London: The MIT Press, 2002.
  • 10Schuster S, Dandekar T and Fell DA. Detection of elementary flux modes in biochemical networks:a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol, 1999, 17 (2) :53 - 60.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部