期刊文献+

氨及掺氨燃烧过程机理与特性研究进展 被引量:3

Advances in process characteristics and mechanisms of ammonia combustion and co-firing
下载PDF
导出
摘要 氨及掺氨燃烧对于替代化石燃料实现无碳化及减碳化燃烧、实现双碳目标具有积极意义。针对氨及掺氨燃烧在燃料化学工业中的应用潜力,阐述了氨及掺氨燃烧的过程机理包括的反应路径、反应方程及机制模型,主要限制因素包括当量比、氨掺混比例和初始温度等对火焰传播速度和火焰温度的影响,氨及掺氨燃烧的反应、流动与能量的数学模型及其模化性能评估,氨及掺氨燃烧过程氮氧化物的生成与控制,以及掺氨燃烧的工业应用。最后,就氨及掺氨燃烧的基础理论和技术发展进行了展望。 Ammonia combustion and co-firing are of positive significance to replace fossil fuels for carbon-free and carbon-reduced combustion to achieve carbon peaking and carbon neutrality goals.Focusing on the applications of ammonia and blended ammonia as fuels in chemical industry,the present work elaborates on the issues of ammonia combustion and ammonia-based co-firing,including(i)the reaction path,reaction equation,and mechanism model;(ii)the main limiting factors including the effect of equivalent ratio,ammonia ratio,and initial temperature on flame propagation speed and flame temperature;(iii)the mathematical modeling and prediction performances of reactions,fluid flow,and energy transport;(iv)the generation and control of nitrogen oxides during the combustion process;(v)applications of ammonia co-firing technology.Finally,the future outlook is highlighted to advance the fundamentals and technologies of ammonia combustion and co-firing.
作者 刘峰 冯少波 赵兵涛 徐洪涛 廖晓炜 窦文宇 黎亚洲 LIU Feng;FENG Shaobo;ZHAO Bingtao;XU Hongtao;LIAO Xiaowei;DOU Wenyu;LI Yazhou(China Special Equipment Inspection and Research Institute,Beijing 100029,China;School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Yanjing Combustion Equipment Testing Co.,Ltd.,Shanghai 201708,China)
出处 《化学工业与工程》 CAS CSCD 北大核心 2023年第6期107-118,共12页 Chemical Industry and Engineering
基金 国家重点研发计划项目(2021YFF0600605)。
关键词 氨燃烧 掺氨燃烧 燃烧机理 过程因素 模拟方法 氮氧化物 ammonia combustion ammonia-based co-firing combustion mechanism process factor modeling approaches NO_(x)
  • 相关文献

参考文献14

二级参考文献82

  • 1[5]BELTRAME A, PORSHNEV P. Soot and NO formation in methane-oxygen enriched diffussion flames[J]. Combustion and Flame, 2001,124:295-310.
  • 2[6]ZHAO D, YAMASHITA H. A numerical study on flame structure and NOx formation of oxygen-enriched air/methane counterflow diffusion flame[A]. Proceedings of 3rd International Symposium on Advanced Energy Conversion Systems and Related Technologyies[C], Japan: 2001.300-308.
  • 3[7]TSUJI H. Counterflow diffusion flames[J]. Prog Ener Combust Sci, 1992,8:93-119.
  • 4[8]YAMASHITA H. Numerical study on NOx production of transitional fuel jet diffusion flame[J]. Transactions of the JSME, 1999,65:630-635.
  • 5[9]KEE R J, RUPLEY F M, MILELLER J A. CHEMKIN-Ⅱ:A fortran chemical package for the analysis of gas-phase chemical kinetics[R]. San Diego: Sandia National Lab, Report No. SAND89-8009, 1989.
  • 6[10]SMOOKE M D, Reduced Kinetic Mechanisms and asymptotic approximations for methane-air flames[M]. Germany,Berlin: Springer Verlag, 1991.
  • 7[11]GRI. http:∥www.me. berkeley. edu/gri_mech/version30/text30.html.
  • 8[12]TAKENO T, NISHIOKA M. Conservation and emission indices for flames described by similarity solutions[J]. Combustion and Flame, 1993,92:465-468.
  • 9李丽梅,郭和军,刘圣华,宫艳峰,周龙保.一种新型含氧燃料燃烧与排放性能研究[J].内燃机工程,2007,28(4):43-45. 被引量:11
  • 10Arashiba K,Miyake Y,Nishibayashi Y.A molybdenum com-plex bearing PNP-type pincer ligands leads to the catalytic re-duction of dinitrogen into ammonia [J].Nature Chemistry,2010,3(2):120-125.

共引文献113

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部