期刊文献+

蛋白核小球藻吸收无机砷的影响特征分析

Analysis on chemical characterization for inorganic arsenic uptake of Chlorella pyrenoidosa
下载PDF
导出
摘要 蛋白核小球藻(Chlorella pyrenoidosa)由于其快速生长特性而被应用于水污染生态修复.本文以蛋白核小球藻为受试绿藻,研究了绿藻细胞界面对AsⅢ和AsⅤ的吸收累积作用,分析了水体pH影响,以及胞外聚合物(extracellular polymeric substance,EPS)释放量和官能团特征.结果表明,蛋白核小球藻细胞吸收AsⅢ和AsⅤ呈浓度依赖关系,短期暴露的藻生长抑制浓度AsⅢ低于AsⅤ,对AsⅢ和AsⅤ最大吸收量分别为39.84μg·g^-1和56μg·g^-1,其吸收和累积能力受pH影响,藻细胞藻-水界面zeta电位、EPS总释放量及其表面活性官能团被检测出呈特征变化. Chlorella pyrenoidosa has been developed in bioremediation for aquatic ecosystem with more rapidly growth.In this study,C.pyrenoidosa was chosen and tested for the uptake process of AsⅢand AsⅤand the influences of pH levels,extracellular polymeric substance(EPS)production and EPS functional groups at the experiments of short-term arsenic exposure.The results showed that arsenic uptake capacities increased in a concentration-dependent manner,and the minimal exposure concentration of AsⅢfor inhibiting the growth of C.pyrenoidosa was lower than that of AsⅤ,the maximum uptake capacities of AsⅢand AsⅤwas 39μg·g^-1 and 56μg·g^-1,and were influenced by pH.In addition,physicochemical characteristics including the algal-water interface negative charge,EPS production and its surface functional groups were detected to be changed with the effects of arsenic exposure in Chlorella pyrenoidosa.
作者 周昉 梁原 张建英 ZHOU Fang;LIANG Yuan;ZHANG Jianying(College of Environmental Science and Resources,Zhejiang University,Hangzhou,310058,China;Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control,Hangzhou,310058,China;National Demonstration Center for Experimental Environment and Resources Education(Zhejiang University),Hangzhou,310058,China)
出处 《环境化学》 CAS CSCD 北大核心 2020年第10期2804-2811,共8页 Environmental Chemistry
基金 国家自然科学基金(21477103)资助
关键词 无机砷 蛋白核小球藻 胞外聚合物 PH ZETA电位 inorganic arsenic Chlorella pyrenoidosa extracellular polymeric substance pH zeta potential
  • 相关文献

参考文献3

二级参考文献44

  • 1Ji G Y, Silver S, 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus-aureus plasmid-pi258. Proceedings of the National Academy of Sciences, USA, 89(20): 9474-9478.
  • 2Kaise T, Fujiwara S, Tsuzuki M, Sakurai T, Saitoh T, Mas- tubara C, 1999. Accumulation of arsenic in a unicellular alga Chlamydomonas reinhardtii. Applied Organometallic Chemistry, 13(2): 107-111.
  • 3Kuroiwa T, Ohki A, Naka K, Maeda S, 1994. Biomethy- lation and biotransformation of arsenic in a fresh- water bod-chain-green-alga (Chlorella-vulgaris)-shrimp (Neocaridina-denticulata)-killifish ( Oryzias-latipes). Ap- plied Organometallic Chemistry, 8: 325-333.
  • 4Liu W J, Wood B A, Raab A, McGrath S P, Zhao F J, Feldmann J, 2010. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis thaliana. Plant Physiology, 152:2211-2221.
  • 5Marco Y J, Ragueh F, Godiard L, Froissard D, 1990. Tran- scriptional activation of 2 classes of genes during the hypersensitive reaction of tobacco leaves infiltrated with an incompatible isolate of the phytopathogenic bacterium Pseudomonas solanacearum. Plant Molecular Biology, 15: 145-154.
  • 6McGrath S P, Zhao F J, 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14: 277-282.
  • 7Meharg A A, 2004. Arsenic in rice understanding a new disaster for South-East Asia. Trends in Plant Science, 9(9): 415- 417.
  • 8Meharg A A, Rahman M M, 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contri- bution to arsenic consumption. Environmental Science and Technology, 37: 229-234.
  • 9Mukhopadhyay R, Rosen B P, 1998. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbi- ology Letters, 168: 127-136.
  • 10Mukhopadhyay R, Rosen B P, 2002. Arsenate reductase in prokaryotes and eukaryotes. Environmental Health Per- spective, 110(5): 745-748.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部