摘要
分析四色问题难点,采用构形法、点着色扩展法和点染色公式法等三种新方法,简捷证明四色问题成立。三种证法,均采用数形结合的数学方法,但思路各异。其中尤以点染色公式法,思维逻辑新颖,论述简朴。四色溯源,当属欧拉公式V-E+F=2及其导出的平面图最小度δ≤5和点染色公式V=2+E/3,均是重要关注点,其中欧拉公式应是四色问题的渊源。
The difficulty of the four-color problem is analyzed,and three new methods such as configuration method,point coloring extension method and point coloring formula method are adopted to prove the validity of the four-color problem.The three proofs all adopt the mathematical method of combining numbers and shapes,but their ideas are different.In particular,the point dyeing formula method is novel in logic and simple in discussion.The origin of four colors is Euler’s formula V-E+F=2,the minimum degree of plane graphδ≤5 derived from it and the point dyeing formula V=2+E/3,both of which are important concerns.Euler’s formula should be the origin of four colors.
作者
崔岩
崔朝栋
Cui Yan;Cui Chaodong(School of Computer Science and Engineering,North China Institute of Aerospace Engineering,Langfang 065000,China;Construction Mechanization Research Branch,China Academy of Building Research,Langfang 065000,China)
出处
《北华航天工业学院学报》
CAS
2022年第4期4-6,共3页
Journal of North China Institute of Aerospace Engineering
关键词
构形
不可免完备集
极大平面图
欧拉公式
点色扩展
点染色
对顶点相邻
configuration
unavoidable complete set
maximal planar graph
Euler’s formula
the color extension
chromatic number
adjacent to vertices