期刊文献+

基于传统逻辑简捷证明四色问题研究

Study on the Four-color Problem of Simple Proof Based on Traditional Logic
原文传递
导出
摘要 分析四色问题难点,采用构形法、点着色扩展法和点染色公式法等三种新方法,简捷证明四色问题成立。三种证法,均采用数形结合的数学方法,但思路各异。其中尤以点染色公式法,思维逻辑新颖,论述简朴。四色溯源,当属欧拉公式V-E+F=2及其导出的平面图最小度δ≤5和点染色公式V=2+E/3,均是重要关注点,其中欧拉公式应是四色问题的渊源。 The difficulty of the four-color problem is analyzed,and three new methods such as configuration method,point coloring extension method and point coloring formula method are adopted to prove the validity of the four-color problem.The three proofs all adopt the mathematical method of combining numbers and shapes,but their ideas are different.In particular,the point dyeing formula method is novel in logic and simple in discussion.The origin of four colors is Euler’s formula V-E+F=2,the minimum degree of plane graphδ≤5 derived from it and the point dyeing formula V=2+E/3,both of which are important concerns.Euler’s formula should be the origin of four colors.
作者 崔岩 崔朝栋 Cui Yan;Cui Chaodong(School of Computer Science and Engineering,North China Institute of Aerospace Engineering,Langfang 065000,China;Construction Mechanization Research Branch,China Academy of Building Research,Langfang 065000,China)
出处 《北华航天工业学院学报》 CAS 2022年第4期4-6,共3页 Journal of North China Institute of Aerospace Engineering
关键词 构形 不可免完备集 极大平面图 欧拉公式 点色扩展 点染色 对顶点相邻 configuration unavoidable complete set maximal planar graph Euler’s formula the color extension chromatic number adjacent to vertices
  • 相关文献

参考文献1

二级参考文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部