摘要
针对突发公共卫生事件的结构化抽取,首先定义了突发公共卫生事件的8种子类型及其结构,在此基础上提出基于BERT-BiLSTM-CRF的事件抽取模型.模型利用了BERT的多头自注意力网络和可微调特性,以管道方式连接事件分类、触发词识别和论元角色分类模型,完成了事件的结构化抽取.在基于新浪微博构建的语料集上的对比实验结果证明了该模型的可行性和先进性.模型的不足之处在于管道方式不可避免地会加大误差累积.
Aiming at the problem of structured extraction of public health emergencies,firstly,the 8 subtypes and structure of public health emergencies are defined.On this basis,an event extraction model based on BERT-BiLSTM-CRF is proposed.Used multi-head self-attention network and fine-tuning characteristics of BERT to connect event classification,trigger word recognition and argument role classification by pipeline,the structured extraction of events is completed.The comparison experiment results based on corpus set up by Sina micro-blog show that the model is feasible and advanced.The disadvantage of the model is that the pipeline mode will inevitably increase the error accumulation.
作者
石磊
李敬明
朱家明
Shi Lei;Li Jingming;Zhu Jiaming(Anhui University of Finance and Economics)
出处
《哈尔滨师范大学自然科学学报》
CAS
2022年第2期37-42,共6页
Natural Science Journal of Harbin Normal University
基金
2020年安徽财经大学科学研究基金资助项目(ACKYC20084)
2018年安徽省哲学社会科学规划项目(AHSKY2018D09)