摘要
在Orlicz空间中,我们引进了一个与Luxemburg范数等价的新范数——赋Φ-Amemiya范数:||x||Φ,Φ1=inf{1/k(1+Φ(IΦ1(kx)))}.并证明了由此范数构成的Orlicz函数空间{LΦ,Φ1,||·||Φ,Φ1}是Banach空间.据此得到了赋Φ-Amemiya范数的Olicz空间包含序渐近等距c0复本的条件.
In Orlicz space,a new norm that is equivalent to the Luxemburg norm is introduced.It is called theΦ-Amemiya norm:||x||Φ,Φ1=inf{1/k(1+Φ(IΦ1(kx)))}.It is shown,furthermore,that the Orlicz function space equipped with this norm{LΦ,Φ1,||·||Φ,Φ1}is a Banach space.Hence,this paper demonstrates the conditions for the Orlicz space with theΦ-Amemiya norm to contain an asymptotically isometric copy of c0.
作者
崔云安
安莉丽
CUI Yun’an;AN Lili(College of Science,Harbin University of Science and Technology,Harbin 150080,China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第2期35-40,共6页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11871181,11701125).