期刊文献+

一致Fredholm指标性质与(ω^1)性质

Property of the consistent Fredholm index and property (ω^1)
下载PDF
导出
摘要 根据一致Fredholm指标性质定义了一种新的谱集,利用该谱集给出了Hilbert空间中有界线性算子满足(ω1)性质的充要条件.此外,研究了hypercyclic算子(或supercyclic算子)和(ω1)性质之间的关系,同时给出了hypercyclic算子与supercyclic算子新的判定方法. In this paper,a new spectrum is defined according to the property of the consistent Fredholm index.We establish the sufficient and necessary conditions for a bounded linear operator defined on a Hilbert space that satisfies the property(ω1).In addition,the paper explores the relationship between the property(ω1)hypercyclic operators and supercyclic operators are given.
作者 戴磊 DAI Lei(School of Mathematics and Statistics,Weinan Normal University,Weinan Shaanxi 714099,China)
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期1-7,共7页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11501419) 渭南师范学院特色学科建设项目(18TSXK03) 渭南师范学院教育科学研究项目(2019JYKX018).
关键词 (ω1)性质 hypercyclic算子 一致Fredholm指标性质 property(ω1) hypercyclic operator property of the consistent Fredholm index spectrum
  • 相关文献

参考文献2

二级参考文献17

  • 1Gong W. B., Han D. G., Spectrum of the products of operators and compact perturbations the American Mathematical Society, 1994, 120: 755-760.
  • 2Weyl H., Uber beschrankte quadratische Formen, deren Diffcrenz vollstctig ist, Rend. Circ. 1909, 27: 373-392.
  • 3Proceedings of Mat. Palermo Harte R., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349: 2115-2124.
  • 4Rakodevic V., Operators obeying a-Wcyl's theorem, Rev. Roumaine Math. Pures Appl., 1989, 34: 915-919.
  • 5Rakodevic V., On a class of operators, Mat. Vesnik, 1985, 37: 423-426.
  • 6Berkani M., index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 2002, 130:1717-1723.
  • 7Cao X. H., Weyl spectrum of the products of operators, J. Korean Math. Soc., 2008, 45:771-780.
  • 8Berkani M., Koliha J. J., Weyl type theorems for bounded linear operators, Aeta Sci. Math. (Szeged), 2003 69: 379-391.
  • 9Taylor A. E., Theorcms on ascent, descent, nullity and defect of linear operators, Math. Ann., 1996, 163 18-49.
  • 10Dai L., Cao X. H., Sun C. H., A note on generalized property (w), Acta Mathematica Sinica 2010, 53(2): 219-226.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部