摘要
高温蠕变是华龙一号(HPR1000)反应堆压力容器(RPV)下封头在严重事故工况下的主要失效模式。为准确地研究采用国产16MND5锻件制造的HPR1000 RPV下封头的高温蠕变问题,确保RPV下封头在严重事故工况下的结构完整性,基于试验获得的材料高温蠕变数据,联合数值模拟和理论分析,对HPR1000 RPV下封头高温蠕变问题进行了系统的研究。首先建立了RPV下封头材料高温蠕变本构模型。利用ANSYS软件开展了高温及内压载荷作用下的下封头高温蠕变数值模拟研究,获得了下封头蠕变应变和蠕变应力分布。此外,首次针对RPV下封头高温蠕变问题进行了理论研究。结果表明,RPV下封头高温蠕变主要发生在温度高于450℃的区域;在严重事故工况下,HPR1000 RPV下封头不会发生高温蠕变失效;内压增大将导致RPV塑性失效范围扩大;RPV下封头稳态蠕变理论分析结果与数值模拟结果相吻合,理论分析结果揭示了RPV下封头分层失效现象。
High-temperature creep is main failure mode of HPR1000 RPV lower dome under severe accident.To accurately study high-temperature creep of HPR1000 RPV lower dome made of domestic 16MND5 forging and assure structure integrity of RPV lower dome under severe accident,high-temperature creep of HPR1000 RPV lower dome is studied systematically in this paper by combining numerical simulation and theoretical analysis based on the high-temperature creep test data.Firstly,the constitutive model of RPV lower dome material is established.Adopting ANSYS software,the numerical simulation of the high-temperature creep of the lower dome under the action of high temperature and internal pressure is performed,and creep strain and stress distributions for lower dome are obtained.Furthermore,the high-temperature creep problem of RPV lower dome is theoretically studied for the first time.The research results indicate,high-temperature creep of RPV lower dome mainly occurs in the zone whose temperature is higher than 450℃;Under severe accident,HPR1000 RPV doesn’t fail due to high-temperature creep;Plasticity failure zone will enlarge with the increase of internal pressure;The theoretical analysis results of steady creep are consistent with the numerical simulation ones,and deeply reveal the layered failure phenomenon of RPV lower dome.
作者
杨立才
邱天
杨志海
尹祁伟
Yang Licai;Qiu Tian;Yang Zhihai;Yin Qiwei(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处
《核动力工程》
EI
CAS
CSCD
北大核心
2022年第S02期202-207,共6页
Nuclear Power Engineering
关键词
反应堆压力容器(RPV)
下封头
高温蠕变
数值模拟
理论研究
Reactor pressure vessel(RPV)
Lower head
High-temperature creep
Numerical simulation
Theoretical research