期刊文献+

基于GA-Chebyshev神经网络的一类分数阶微分方程的数值解 被引量:1

Numerical solution of a class of fractional differential equations based on GA-Chebyshev neural network
下载PDF
导出
摘要 针对一类分数阶微分方程求数值解的问题,在切比雪夫神经网络的基础上,提出一种利用遗传算法优化切比雪夫神经网络的新方法,并通过2个算例验证了该方法的可行性和有效性。研究结果表明:与现有数值方法相比,采用改进的切比雪夫神经网络方法计算微分方程的数值解与准确解更为接近,误差较小。研究结论为分数阶微分方程中类似问题的求解提供了新思路。 Aiming at the problem of numerical solution of a class of fractional differential equations,a new method of optimizing Chebyshev neural network by genetic algorithm is proposed based on Chebyshev neural network.The feasibility and effectiveness of the method are verified by two examples.The results show that compared with the existing numerical methods,the numerical solution of the differential equation calculated by the improved Chebyshev neural network method is closer to the accurate solution and the error is smaller.The research conclusion provides a new idea for solving similar problems in fractional differential equations.
作者 胡行华 秦艳杰 HU Xinghua;QIN Yanjie(Institute of Optimization and Decision,Liaoning Technical University,Fuxin 123000,China)
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2023年第3期370-377,共8页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金项目(51704140) 辽宁省教育厅高等学校基本科研项目(LJYL043,LJ2019-1151)
关键词 切比雪夫神经网络 遗传算法 泰勒展开思想 分数阶微分方程 数值解 Chebyshev neural network genetic algorithm Taylor expansion thought fractional differential equation numerical solution
  • 相关文献

参考文献6

二级参考文献29

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2喻高航,关履泰.具有充分下降性的修正PRP算法及其收敛性[J].中山大学学报(自然科学版),2006,45(4):11-14. 被引量:10
  • 3孙增圻.智能控制理论与应用[M].北京:清华大学出版社,1997.169-177.
  • 4Yunong Zhang, Shuzhi Sam Ge. Design and Analysis of a General Recurrent Neural Network Model for Time-Varying Matrix Inversion[J]. IEEE Transactions on Neural Networks, 2005, 16(6):1477-1490
  • 5Yunong Zhang, Jun Wang. Recurrent Neural Networks for Non- Linear Output Regulation[J]. Automatica, 2001, 37(8): 161-1173
  • 6D. Rumelhart, E. McClelland. Parallel Distributed Processing: Explorations in the Microstructure of Cognition[M]. Cambridge, MIT Press, 1986
  • 7Xuhua Yang, Huaping Dai, Youxian Sun. SIMO Fourier Neural Networks Research[C]. Proceedings of IEEE Intelligent Transportation Systems, 2003, 2:1606-1609
  • 8Xue-Bin Liang, Shiu Kit Tso. An Improved Upper Bound on Step-Size Parameters of Discrete-Time Recurrent Neural Networks for Linear Inequality and Equation System[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2002,49(5):695-698
  • 9J J Buckley,Yoichi Hayashi. Neural Nets can be universal approximators for fuzzy functions[C].In :IEEE lnt Conf NN, 1997:2347~2349
  • 10王士同模糊神经网络及其程序设计[M].上海:上海科学技术文献出版社,1999

共引文献37

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部