摘要
针对一类分数阶微分方程求数值解的问题,在切比雪夫神经网络的基础上,提出一种利用遗传算法优化切比雪夫神经网络的新方法,并通过2个算例验证了该方法的可行性和有效性。研究结果表明:与现有数值方法相比,采用改进的切比雪夫神经网络方法计算微分方程的数值解与准确解更为接近,误差较小。研究结论为分数阶微分方程中类似问题的求解提供了新思路。
Aiming at the problem of numerical solution of a class of fractional differential equations,a new method of optimizing Chebyshev neural network by genetic algorithm is proposed based on Chebyshev neural network.The feasibility and effectiveness of the method are verified by two examples.The results show that compared with the existing numerical methods,the numerical solution of the differential equation calculated by the improved Chebyshev neural network method is closer to the accurate solution and the error is smaller.The research conclusion provides a new idea for solving similar problems in fractional differential equations.
作者
胡行华
秦艳杰
HU Xinghua;QIN Yanjie(Institute of Optimization and Decision,Liaoning Technical University,Fuxin 123000,China)
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2023年第3期370-377,共8页
Journal of Liaoning Technical University (Natural Science)
基金
国家自然科学基金项目(51704140)
辽宁省教育厅高等学校基本科研项目(LJYL043,LJ2019-1151)
关键词
切比雪夫神经网络
遗传算法
泰勒展开思想
分数阶微分方程
数值解
Chebyshev neural network
genetic algorithm
Taylor expansion thought
fractional differential equation
numerical solution