摘要
利用模pq的欧拉商定义了周期为pq^(2)的r元序列,并确定了该序列线性复杂度的精确值.结果表明,新序列具有高的线性复杂度,可以抵抗Berlekamp Massey算法的攻击.
Based on the Euler quotient modulus pq,a class of r-ary sequence with period pq^(2)is defined.The exact value of the linear complexity of the new sequence is determined.The results show that the new defined sequence has high linear complexity and thus can resist Berlekamp Massey algorithm attack.
作者
余林燕
柯品惠
YU Linyan;KE Pinhui(College of Mathematics and Informatics,Fujian Provincial Key Laboratory of Network Security and Cryptology,Fujian Normal University,Fuzhou 350117,China)
出处
《福建师范大学学报(自然科学版)》
CAS
2021年第4期1-7,共7页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(61772292、61772476)
福建省自然科学基金资助项目(2019J01273)
关键词
欧拉商
广义分圆
伪随机序列
线性复杂度
Euler quotient
generalized cyclotomy
pseudo-random sequence
linear complexity