期刊文献+

基于ISIGHT的某型飞机发动机短舱防火结构设计

Fireproof Structure Design Based on ISIGHT for Aircraft Engine Nacelle
原文传递
导出
摘要 以某型发动机短舱为研究对象,依据CCAR-25-R4适航条款要求,对短舱结构进行了防火区域的界定,为考核短舱防火结构的受力状况,建立短舱后段防火结构有限元模型,完成了5种工况下的有限元分析;综合计算结果,选取其中最严重受力工况,结合发动机的安装和维护需求,开展短舱后段防火结构优化分析;最后以短舱中典型的钛合金防火平板、焊接板2种结构为例,开展了结构防火试验。试验结果表明,防火结构有良好的防火性,满足飞机设计要求。通过以上的结构优化、材料性能试验等流程,最终形成了一套短舱防火结构设计方法,降低了结构重量,加快了设计流程。 A certain type of engine nacelle is taken as the research object,and the fireproof area of the nacelle structure is defined according to the requirements of the CCAR-25-R4 airworthiness clause.In order to assess the force status of the fireproof structure of the nacelle,a finite element model of the fireproof structure in the rear section of the nacelle is established,and the finite element analysis under five working conditions is completed.After that,comprehensive calculation results,and selected the most serious force conditions,combined with the installation and maintenance needs of the engine,to optimize analysis of the fireproof structure in the rear section of the nacelle.Finally,taking the typical titanium alloy fireproof plate and welded plate structure in the nacelle as an example,the structural fireproof test is carried out.The test results show that the fireproof structure has good fire resistance and meets the requirements of aircraft design.Through the above structural optimization,material performance test and other processes,a set of nacelle fireproof structure design methods are finally formed,which reduce the weight of the structure and accelerate the design process.
作者 舒恪晟 SHU Kesheng(General Huanan Aircraft Industry Co.,Ltd.,Zhuhai 519040,China)
出处 《飞机设计》 2023年第2期21-25,共5页 Aircraft Design
关键词 发动机短舱 防火结构 钛合金 结构优化 强度分析 engine nacelle fireproof structures titanium alloy structural optimization intensity analysis
  • 相关文献

参考文献11

二级参考文献46

  • 1Guilherme L. Oliveira, Luis Gustavo Trapp, Antonini Puppin-Macedo. Integration methodology for regional jet aircraft with underwing engines[C]. 2003: AIAA- 2003-934.
  • 2Takashi Saitoh, Hyoung Jin Kim, Keizo Takenaka, Kazuhiro Nakahashi. Multi-point design of wing-body-nacelle-pylon configuration[C]//The 24th Applsed Aerodynamics conference. San Francisco, California, 2006: AIAA 2006-3461.
  • 3郑作棣.运输类飞机适航标准技术咨询手册[M].北京:航空工业出版社.1995:D-106.
  • 4Koc S, Kim H J, Nakahashi K. Aerodynamic design of complex configurations with junctions. Journal of Air- craft, 2006, 43(6): 1838-1844.
  • 5Kim H J, Nakahashi K. Surface mesh movement for aero- dynamic design of body-installation junction. AIAA Jour- nal, 2007, 45(5) : 1138-1142.
  • 6Kanazaki M, Imamura T, Jeong S, et al. High-lift wing design in eonsideration of sweep angle effeet using kriging model. AIAA-2008-175, 2008.
  • 7Zhang Y F, Chen H X, Fu S. Computations of a twin-en- gine civil transporter using window embedment grid teeh- nique. AIAA-2008-169, 2008.
  • 8Hicks R M, Henne P A. Wing design by numerical opti- mization. Journal of Aircraft, 1978, 15(7): 407-412.
  • 9Lepine J, Guibault F, Trepanier J Y, et al. Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings. AIAA Journal, 2001, 39 (11) : 2033-2041.
  • 10Mavriplis D J, Vassberg J C, Tinoco E N, et al. Grid quality and resolution issues from the drag prediction workshop series. AIAA-2008-930, 2008.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部