摘要
Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high-value organics is crucial.Electrochemical CO_(2)reduction reaction(CO_(2)RR)is highly promising to convert CO_(2)into economically viable carbon-based chemicals or fuels under mild process conditions.Herein,mesoporous indium supported on multi-walled carbon nanotubes(mp-In@MWCNTs)is synthesized via a facile wet chemical method.The mp-In@MWCNTs electrocatalysts exhibit high CO_(2)RR performance in reducing CO_(2)into formate.An outstanding activity(current density-78.5 mA cm^(-2)),high conversion efficiency(Faradaic efficiency of formate over 90%),and persistent stability(∼30 h)for selective CO_(2)-to-formate conversion are observed.The outstanding CO_(2)RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network,which promote the adsorption and desorption of reactants and intermediates while improving electron transfer.These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO_(2)conversion.
基金
Jiujiang Research Institute in Xiamen University for the partial support
the support of QUT Faculty Centre Strategic Funding provided by the Faculty of Science and QUT Centre for a Waste-Free World
the Australian Research Council(ARC)
QUT Centre for Materials Science for partial support