摘要
使用4种类型的循环神经网络模型(RNN、GRU、LSTM、BLSTM)处理手机传感器采集的异构时间序列数据,用于人体行为识别研究。针对4种模型,分别构建自动特征提取方法,并对参数进行优化。
In this paper, four types of recurrent neural network models(RNN, GRU, LSTM, BLSTM) are used to process heterogeneous time series data collected by mobile phone sensors for human behavior recognition. For the four models, the automatic feature extraction methods are constructed and the parameters are optimized.
作者
吴海燕
WU Haiyan(Zhengzhou Xiyasi College,Henan 451100,China)
出处
《电子技术(上海)》
2020年第10期18-19,共2页
Electronic Technology
基金
2020年河南省科技厅科技攻关项目(202102310201)
关键词
行为识别
时序数据
循环神经网络
BLSTM
behavior recognition
time series data
recurrent neural network
BLSTM