摘要
基于BP神经网络、蝙蝠算法、支持向量机算法的对比,提出改进支持向量机的汽车发动机故障诊断方法,并验证了改进的算法,从而提升发动机故障诊断系统的性能。
Based on the comparison of BP neural network,bat algorithm and support vector machine algorithm,this paper proposes an improved support vector machine fault diagnosis method for automobile engine,and verifies the improved algorithm,so as to improve the performance of engine fault diagnosis system.
作者
高巧玲
余娟
GAO Qiaoling;YU Juan(Hunan Railway Vocational and Technical College,Hunan 412001,China)
出处
《电子技术(上海)》
2020年第6期22-23,共2页
Electronic Technology
基金
湖南铁道职业技术学院2019年院级课题(K201902)
关键词
故障诊断
支持向量机
智能算法
fault diagnosis
support vector machine
intelligent algorithm