期刊文献+

改进价值函数的多阶段间歇过程故障检测

Fault detection of multistage batch process based on improved value function
下载PDF
导出
摘要 针对现有的阶段划分策略没有同时考虑间歇过程的动态性和多阶段特性,而导致过程检测效果不佳的问题,提出了一种改进的结合价值函数的多向核主成分分析(CVF-MKPCA)算法。首先,对间歇过程的三维数据进行相应的方向展开,并且通过构建扩展矩阵来提取间歇过程数据之间的动态特性;其次,构建一种改进的结合价值函数,评估互异时间序列信息之间的结构相似性;然后,根据动态结构相似性的评估要求,利用自下向上的搜索方法进行阶段划分,再采用MKPCA方法进行阶段建模,最后,通过构造出一种新的combine统计量对各阶段进行故障检测。所提算法在青霉素发酵仿真过程中故障误报率在控制限为95%时为3.40%,在控制限为99%时为7.98%,与对比方法相比误报率分别降低了2.12%和1.26%,证明了所提方法具有更优越的故障检测性能。 Aiming at the problem that the existing stage division strategy does not consider the dynamic and multi-stage characteristics of batch processes at the same time,resulting in poor process detection effect,an improved multi-phase kernel principal component analysis based on combined value function(CVF-MKPCA)algorithm is proposed.Firstly,the three-dimensional data of the batch process are expanded in the corresponding direction,and the dynamic characteristics between the data of the batch process are extracted by constructing the expansion matrix.Secondly,an improved combined value function is constructed to evaluate the structural similarity between different time series information;then,according to the evaluation requirements of dynamic structural similarity,the bottom-up search method is used for stage division,and MKPCA method is used for stage modeling.Finally,a new combine statistic is constructed to detect faults in each stage.In the simulation process of penicillin fermentation,the false alarm rate of the proposed algorithm is 3.40%when the control limit is 95%,and 7.98%when the control limit is 99%,compared with the comparison method,the false alarm rate is reduced by 2.12%and 1.26%respectively,which proves that the proposed method has better fault detection performance.
作者 赵小强 徐蓉蓉 Zhao Xiaoqiang;Xu Rongrong(College of Electrical Engineering and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou 730050,China;National Experimental Teaching Center of Electrical and Control Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第12期45-54,共10页 Journal of Electronic Measurement and Instrumentation
基金 国家重点研发计划项目(2020YFB1713600) 国家自然科学基金(62263021) 甘肃省科技计划资助(21YF5GA072,21JR7RA206) 甘肃省教育厅产业支撑计划项目(2021CYZC-02)资助
关键词 多阶段 间歇过程 结合价值函数 动态结构相似性 multi-stage batch process combined value function dynamic structural similarity
  • 相关文献

参考文献20

二级参考文献164

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:62
  • 2席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996,22(4):456-461. 被引量:61
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4邱天,丁艳军,吴占松.基于霍金斯指标的传感器数据有效性验证[J].中国电机工程学报,2007,27(14):77-81. 被引量:5
  • 5Nomikos P;MacGregor J F.Monitoring batch processes using multiway principal component analysis,1994.
  • 6Nomikos P and MacGregor J F. Monitoring batch processes using multi-way principal component analysis. AIChE J, 1994, 40: 1361-1375.
  • 7Nomikos P and MacGregor J F. Multivariate SPC charts for batch processes. Technometrics, 1995,37(1):41-59.
  • 8Nomikos P and MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemo-metrics and Intelligent Laboratory Systems, 1995,30:97-108.
  • 9Undey C and Cinar A. Statistical monitoring of multistage, multi-phase batch processes. IEEE Control Syst Mag, 2002, 22:40-52.
  • 10Camacho J, Pic J. Multi-phase principal component analysis for batch processes modeling. Chemometrics and Intelligent Laboratory Systems, 2006, 81(2):127-136.

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部