期刊文献+

基于融合特征与优化随机森林的眼动模式识别

Eye movement pattern recognition based on fused features and optimized random forest
下载PDF
导出
摘要 为充分挖掘眼动模式信息,最大限度优化模型效果,提高眼动模式识别准确率,本文提出了一种基于融合特征与优化随机森林的眼动模式识别方法。首先提取常规眼动特征、眼动序列子模式特征、视线点高斯分布特征3组特征参数,结合ReliefF选择重要的特征,建立融合特征矩阵,然后以随机森林为基础,使用粒子群算法对模型参数全局寻优,建立优化随机森林眼动模式识别模型。通过自闭症患者眼动实验公开数据集验证本文所提方法的有效性,实验结果表明所提方法能较好区分正常人和自闭症患者之间的眼动模式差异,相较于常规眼动特征随机森林的分类准确率提升了9.57%。因此,融合特征能更好的挖掘眼动模式包含的信息,粒子群算法能有效优化模式识别模型效果,为眼动模式识别提供了新思路与方法。 To fully exploit the eye movement pattern information,maximize the optimization model effect and improve the eye movement pattern recognition accuracy,this paper proposes an eye movement pattern recognition method based on fused features and optimized random forest.First,we extract three groups of feature parameters:Conventional eye movement features,eye movement sequence sub-pattern features,and gaze points gaussian distribution features,combine them with ReliefF to select important features and build a fused features matrix.Then we use the particle swarm algorithm to globally seek the model parameters based on random forest to build the optimized random forest eye movement pattern recognition model.We verify the effectiveness of the proposed method by using the open dataset of eye movement experiments of autistic patients,and the experimental results show that the proposed method can better distinguish the difference of eye movement patterns between normal and autistic patients,and the classification accuracy is improved by 9.57%compared with the random forest of Conventional eye movement features.Therefore,the fused features can better exploit the information contained in the eye movement patterns,and the particle swarm algorithm can effectively optimize the effect of the pattern recognition model,which provides a new idea and method for eye movement pattern recognition.
作者 沈胤宏 郑秀娟 张畅 Shen Yinhong;Zheng Xiujuan;Zhang Chang(College of Electrical Engineering,Sichuan University,Chengdu 610065,China;Key Laboratory of Information and Automation Technology of Sichuan Province,Chengdu 610065,China)
出处 《电子测量技术》 北大核心 2023年第15期10-17,共8页 Electronic Measurement Technology
关键词 融合特征 眼动模式 粒子群算法 随机森林 fused features eye movement pattern particle swarm optimization algorithm random forest
  • 相关文献

参考文献8

二级参考文献81

  • 1王鸿玺,李飞,林志文,罗义钊,梁海涛,胡建新.基于IK-means的用电行为研究[J].国外电子测量技术,2020,39(1):54-58. 被引量:5
  • 2方琴,李永前.K近邻短期交通流预测[J].重庆交通大学学报(自然科学版),2012,31(4):828-831. 被引量:13
  • 3何永勃,王化祥,马敏.高精度人体电阻抗断层成像系统[J].电子测量与仪器学报,2006,20(2):48-51. 被引量:4
  • 4彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589. 被引量:41
  • 5KLAUER S G, DINGUS T A, NEALE V L, et al. The im- pact of driver inattention on near-crash/crash risk : an analy- sis using the 100-car naturalistic driving study data [ R ]. Washington: National Highway Traffic Safety Administra- tion, 2006.
  • 6FORSMAN P M, VILA B J, SHORT R A, et al. Efficient driver drowsiness detection at moderate levels of drowsiness [J]. Accident Analysis and Prevention, 2013, 50: 341- 350.
  • 7AHLSTROM C, NYSTROM M, HOLMQVIST K, et al. Fit- for-duty test for estimation of drivers' sleepiness level: eye movements improve the sleep/wake predictor [ J]. Transpor- tation Research Part C, 2013, 26: 20-32.
  • 8JIN L S, NIU Q N, HOU H J, et al. Driver cognitive dis- traction detection using driving performance measures [ J ]. Discrete Dynamics in Nature and Society, 2012, 2012: 1- 12.
  • 9LENSKIY A A, LEE J S. Driver' s eye blinking detection u- sing novel color and texture segmentation algorithms [ J]. In- ternational Journal of Control Automation and Systems, 2012, 10(2): 317-327.
  • 10SAHAYADHAS A, SUNDARAJ K, MURUGAPPAN M. Detecting driver drowsiness based on sensors: a review [J]. Sensors, 2012, 12: 16937-16953.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部