期刊文献+

伪RFID标签信号的谱熵特征提取与选择

Spectral entropy feature extraction and selection of pseudo RFID tag signals
下载PDF
导出
摘要 为解决RFID通信安全问题,本文提出一种新的物理层标签防伪技术,该技术对原始信号进行信号分离得到期望、噪音和标准化信号,然后对3种信号的谱熵特征进行特征提取,最后利用特征选择实现真伪标签分类。另外,本文还提出了一种新的交叉验证来客观测试物理层方法的性能。结果表明,本文方法准确率比传统方法提升近4%,在新交叉验证下,物理层方法的分类准确率会下降8%~10%,由此本文得到重要结论,在物理层识别方法中利用谱熵特征实现标签防伪有着重要意义。 In order to solve the problem of RFID communication security,this paper proposes a new physical layer tag anti-counterfeiting technology.This technology separates the original signal to obtain the expected,noise and normalized signals,and extracts the spectral entropy features of the three signals.Finally,feature selection is used to achieve true and false label classification.In addition,this paper proposes a new cross-validation to objectively test the performance of the physical layer method.The results show that the accuracy of the method in this paper is nearly 4%higher than that of the traditional method.Under the new cross-validation,the classification accuracy of the physical layer method will drop by 8~10 percentage points.From this,we get an important conclusion,it is of great significance to use the spectral entropy feature in the physical layer identification method to realize the label anti-counterfeiting.
作者 高威 吴海锋 曾玉 普崇荣 Gao Wei;Wu Haifeng;Zeng Yu;Pu Chongrong(School of Electrical and Information Engineering,Yunnan Minzu University,Kunming 650504,China;Innovation of Intelligent Sensor Network and Information System in Yunnan Province University,Kunming 650504,China)
出处 《电子测量技术》 北大核心 2023年第1期25-34,共10页 Electronic Measurement Technology
基金 国家自然科学基金(62161052)项目资助
关键词 无线射频识别 防伪 安全 特征选择 交叉验证 RFID anti-counterfeiting security cross-validation feature selection
  • 相关文献

参考文献4

二级参考文献50

  • 1徐梅,黄超.基于符号时间序列方法的金融收益分析与预测[J].2011,19(5):1-9.
  • 2WANG X, MUEEN A, DING H, et al. Experimental comparison of representation methods and distance meas- ures for time series data [ J ]. Data Mining and Knowl- edge Discovery, 2013, 26(2): 275-309.
  • 3DAVIS J V, KULIS B, JAIN P, et al. Information- theoretic metric learning [ C ] . Proceedings of the 24th International Conference on Machine Learning, ACM, 2007 : 209-216.
  • 4HEISSLER H E, KONIG K, KRAUSS J K, et al. Analy- sis of intracranial pressure time series using wavelets (Haar basis functions) [ M ]. Intracranial Pressure and Brain Monitoring XIV, Springer Vienna, 2012: 87-91.
  • 5LIU H, YU L. Toward integrating feature selection algorithms for classification and clustering [ J ]. Knowl- edge and Data Engineering, IEEE Transactions on, 2005, 17(4) : 491-502.
  • 6WIDODO A,SHIM M C, CAESARENDRA W, et al. Intelligent prognostics for battery health monitoring based on sample entropy [ J ]. Expert Systems with Applications, 2011, 38(9): 11763-11769.
  • 7CHICCO G, AKILIMALI J S. Renyi entropy-based classification of daily electrical load patterns [ J ]. IET Generation, Transmission & Distribution, 2010, 4(6) : 736-745.
  • 8VILA M, BARDERA A, XU Q, et al. Tsallis entropy- based information measures for shot boundary detection and keyframe selection [ J ]. Signal, Image and Video Processing, 2013, 7(3): 507-520.
  • 9AHMED M U, MANDIC D P. Multivariate multiscale entropy: A tool for complexity analysis of multichannel data[J]. Physical Review E, 2011, 84(6) : 061918.
  • 10MAY J, MA L, ZHOU X S. The summary of chaos theory in PV system[J]. Advanced Materials Research, 2013, 811: 698-701.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部