期刊文献+

高温超导轴承转子系统在不同场冷偏心距下的动力学分析

Dynamic analysis of high temperature superconducting bearing rotor system with different field cooling eccentricity
原文传递
导出
摘要 高温超导轴承用超导材料在冷却过程中处于场冷状态,俘获磁通的存在使高温超导轴承具有自稳定性。场冷高度影响轴承的钉扎力,从而产生不同的刚度,最终导致整个轴系的转子动力学变化。本文以冷压缩机为应用背景,基于实验测量得到YBCO在不同场冷高度下的刚度值,利用有限元分析软件Ansys,得到设计轴系的模态频率和主轴振幅。结果表明,由于场冷偏心距的存在,导致高温超导轴承合力比不偏心时大,从而改善了转子的动力学特性。 The superconducting materials used in high temperature superconducting(HTS)bearings are in the magnetic field during the cooling process,and the trapped flux makes HTS bearings self-stable.The field cooling height affects the pinning force of the bearings,resulting in different stiffness,and finally leads to the rotor dynamics change of the whole shaft system.Based on the application of cold compressors,the stiffness values of YBCO at different field cooling heights were obtained by testing.Using Ansys,a finite element analysis software,the modal frequency and axis track amplitude of the designed shaft system were further obtained.The results show that because of the field cooling eccentricity,the resultant force of HTS superconducting bearings is larger than that without eccentricity,thus improving the dynamic characteristics of the rotor.
作者 商晋 邹银才 边星 关翔 伍继浩 李青 Shang Jin;Zou Yincai;Bian Xing;Guan Xiang;Wu Jihao;Li Qing(State Key Laboratory of Technologies in Space Cryogenic Propellants,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《低温与超导》 CAS 北大核心 2020年第2期1-6,共6页 Cryogenics and Superconductivity
基金 国家重大科研装备研制项目(ZDYZ2014-1)资助。
关键词 高温超导轴承 刚度 转子动力学 HTS bearing Stiffness Rotor dynamics
  • 相关文献

参考文献4

二级参考文献29

  • 1郝建山,韩磊,张智伟,韩清凯,闻邦椿.分布多质量转子系统的不平衡响应特征[J].机械设计与制造,2006(7):34-36. 被引量:9
  • 2李永亮,方进,郭明珠.一种新型超导混合磁悬浮轴承的悬浮力特性分析[c].第九届全国超导学术研讨会,西安,2007.
  • 3Hull J R. Superconducting bearings[J]. Supercon- ductor Science and Technology, 2000, 13(2): R1-R15.
  • 4Wolsky A M. An overview of flywheel energy systems with HTS bearings[J]. Superconductor Science and Technology, 2002, 15(5): 836-837.
  • 5Strasik M, Johnson P E, Day A C, et al. Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2133-2137.
  • 6Strasik M, Hull J R, Mittleider J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3) 034021. 1-034021.5.
  • 7Werfel F N, Floegel Delor U, Rothfeld R, et al. Superconductor bearings, flywheels and transportation [J]. Superconductor Science and Technology, 2012, 25(1): 014007. 1-014007. 16.
  • 8Werfel F N, Floegel-Delor U, Rothfeld R, et al. Modelling and construction of a compact 500 kg HTS magnetic bearing[J]. Superconductor Science and Technology, 2005, 18(2): S19-S23.
  • 9Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C: Superconductivity, 2006, 445:1103-1108.
  • 10Fang J R, Lin L Z, Yan L Get al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1657-1660.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部