期刊文献+

AlCl分子低激发态光谱性质的从头计算研究

Ab Initio Calculation of the Spectroscopic Properties of the Low-Lying Excited States of AlCl Molecule
下载PDF
导出
摘要 AlCl分子在天体物理、化学领域以及激光冷却方面发挥着重要作用。本文使用高精度多参考组态相互作用方法(MRCI+Q)对AlCl分子低激发态进行研究。基于获得的势能曲线(PECs)拟合电子态的光谱常数,与实验值吻合较好。计算了电子态的偶极矩(DMs)以及自旋轨道(SO)矩阵元随核间距变化的曲线。同时还计算了AlCl分子的跃迁性质,包括跃迁偶极距(TDMs)和Franck-Condon因子(FCFs)以及辐射寿命。AlCl分子的1^(1)Π-1^(1)Σ^(+)跃迁FCFs高度对角化,有作为激光冷却光循环的潜力。计算结果对AlCl分子电子结构性质后续的实验研究具有一定的参考价值。 AlCl molecules play an important role in the fields of astrophysics,chemistry and laser cooling.It uses the high-precision multi-reference configuration interaction method(MRCI+Q)to study the low-lying excited states of AlCl molecules.Based on the obtained potential energy curves(PECs),the spectroscopic constants of the fitted electronic states are in good agreement with the experimental values.The dipole moments(DMs)of electronic states and the curves of spin-orbit(SO)matrix elements varying with the internuclear distance are calculated.At the same time,the transition properties of AlCl molecules were calculated,including transition dipole moments(TDMs),Franck-Condon factors(FCFs)and radiation lifetime.The FCFs of the AlCl molecule 1^(1)Π-1^(1)Σ^(+)are highly diagonal and have the potential to be used as a laser cooling light cycle.The calculated results have certain reference value for the subsequent experimental research on the electronic structure properties of AlCl molecules.
作者 国慧杰 桑纪群 姜文 李瑞 任晓辉 艾瑞波 GUO Huijie;SANG Jiqun;JIANG Wen;LI Rui;REN Xiaohui;AI Ruibo(School of Science,Qiqihar University,Qiqihar 161006,China)
出处 《大学物理实验》 2022年第2期39-44,共6页 Physical Experiment of College
基金 齐齐哈尔大学教育科学研究项目(2017026) 黑龙江省微纳传感器件重点实验室开放课题项目,(WNCGQJKF202103) 黑龙江省省属高等学校基本科研业务费青年创新人才项目(135509217) 黑龙江省省属高等学校基本科研业务费科研项目(145109129)
关键词 AlCl 多参考组态相互作用方法 势能曲线 跃迁性质 AlCl MRCI+Q potential energy curves transition properties
  • 相关文献

参考文献1

二级参考文献39

  • 1Shuman E S, Barry J F and DeMille D 2010 Nature 467 820.
  • 2Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001.
  • 3Zhelyazkova V, Coumol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416.
  • 4Shen J, Borodin A, Hansen M and Schiller S 2012 Phys. Rev. A 85 032519.
  • 5Wang Y Z 2011 Physics 40 421 (in Chinese).
  • 6Xu Z, Dang W R and Wang Y Z 2008 Physics 37 708 (in Chinese).
  • 7Zhou S Y, Long Q, Zhou S Y, Fu H X and Wang Y Z 2002 Physics 31 481 (in Chinese).
  • 8Di Rosa M D 2014 Eur. Phys. J. D 31 395.
  • 9Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018.
  • 10Dyke J M, Kirby C, Morris A, Gravenor B W J, Klein R and Rosrnus P 1984 Chem. Phys. 88 289.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部