摘要
在轨道交通运营管理过程中,不同车站间客流的时间分布特性及规律直接决定了客流组织方案。明晰车站间客流分型及特征,对合理配置客流组织方案大有裨益。相对于单车站客流类型,多车站间客流类型的影响因素多样且复杂,为此,从时间、空间和结构3个角度对车站间客流分类特征进行分析,并通过谱聚类方法压缩搜索空间,从而达到更加精准的类型划分。利用轮廓系数与戴维森堡丁指数对比不同方法的分类结果,证明所提出的谱聚类方法相对于k-means等其他方法具有更好的分类效果。以苏州地铁2020年数据为例,通过提出的方法寻找出7种车站间客流分型,该结果可应用于预测模型训练等领域。
In the process of rail transit operation management,the characteristics and rules of the time distribution of passenger flow between different stations directly determine the passenger flow organization scheme.The clarification of the interstation passenger flow time distribution types is beneficial to the reasonable configuration of the passenger flow organization scheme.This study analyzes the classification characteristics of interstation passenger flow from three perspectives of time,space,and structure,and compresses the search space of classification using a spectral clustering method to achieve a more accurate type classification.The classification results of different methods are compared using the silhouette coefficient and Davies-Bouldin index are used to demonstrate that the proposed spectral clustering method has better classification results compared with other methods such as k-means.Taking Suzhou Metro 2020 data as an example,seven types of interstation passenger flow time distributions are found by the proposed method,and the results can be applied to areas such as prediction model training.
作者
姚振康
高国飞
郑汉
黄兆察
YAO Zhenkang;GAO Guofei;ZHENG Han;HUANG Zhaocha(Suzhou Rail Transit Group Co.,Ltd.,Suzhou 215004;Beijing Urban Construction Design&Development Group Co.,Ltd.,Beijing 100037;Beijing Jiaotong University,Beijing 100044)
出处
《都市快轨交通》
北大核心
2022年第2期99-104,116,共7页
Urban Rapid Rail Transit
基金
苏州市科技发展计划(SS201830)
关键词
城市轨道交通
车站间客流
谱聚类
多特征分析
urban rail transit
passenger-flow between station
spectral clustering
multi-feature analysis